-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueRules of Thumb
This month, we delve into rules of thumb—which ones work, which ones should be avoided. Rules of thumb are everywhere, but there may be hundreds of rules of thumb for PCB design. How do we separate the wheat from the chaff, so to speak?
Partial HDI
Our expert contributors provide a complete, detailed view of partial HDI this month. Most experienced PCB designers can start using this approach right away, but you need to know these tips, tricks and techniques first.
Silicon to Systems: From Soup to Nuts
This month, we asked our expert contributors to weigh in on silicon to systems—what it means to PCB designers and design engineers, EDA companies, and the rest of the PCB supply chain... from soup to nuts.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
Happy’s Essential Skills: The Need for Total Quality Control (Six Sigma and Statistical Tools), Part 2
February 3, 2016 | Happy HoldenEstimated reading time: 8 minutes
To read part one of this series, click here.
Six Sigma
Six Sigma is a disciplined, data-driven approach and methodology for eliminating defects (driving toward six standard deviations between the mean and the nearest specification limit) in any process—from manufacturing to transactional, and from product to service.
The statistical representation of Six Sigma describes quantitatively how a process is performing. To achieve Six Sigma, a process must not produce more than 3.4 defects per million opportunities. A Six Sigma defect is defined as anything outside of customer specifications. A Six Sigma opportunity is then the total quantity of chances for a defect.
The fundamental objective of the Six Sigma methodology is the implementation of a measurement-based strategy that focuses on process improvement and variation reduction through the application of Six Sigma improvement projects. This can be accomplished through two Six Sigma sub-methodologies: Business Process Management Systems (BPMS) and Six Sigma Improvement Methodologies: DMAIC and DMADV (Figure 1).
The Six Sigma DMAIC process (define, measure, analyze, improve, control) is an improvement system for existing business processes falling below specification and looking for incremental improvement. The Six Sigma DMADV process (define, measure, analyze, design, verify) is an improvement system used to develop new processes, products, or defining customer needs at Six Sigma quality levels. It is also called Design for Six Sigma (DFSS). It can also be employed if a current process requires more than just incremental improvement. Both Six Sigma processes are executed by Six Sigma Green Belts and Six Sigma Black Belts, and are overseen by Six Sigma Master Black Belts.
According to the Six Sigma Academy, black belts save companies approximately $230,000 per project and can complete four to six projects per year. General Electric, one of the most successful companies implementing Six Sigma, has estimated benefits on the order of $10 billion during the first five years of implementation. GE first began Six Sigma in 1995 after Motorola and Allied Signal blazed the Six Sigma trail. Since then, thousands of companies around the world have discovered the far-reaching benefits of Six Sigma.
Many frameworks exist for implementing the Six Sigma methodology. Six Sigma consultants all over the world have developed proprietary methodologies for implementing Six Sigma quality, based on the similar change management philosophies and applications of tools. A partial list of 18 framework and methodologies are listed here. Eight will be detailed in this and future columns in this magazine. Additionally, I have include 37 tools and templates in this column and seven more will be detailed in the future. Definitions and examples of all are available at the Six Sigma website[1].
Frameworks and Methodologies
- Balanced Scorecard
- Benchmarking*
- Business Process Management (BPM)*
- Design for Six Sigma (DFSS)*
- DMAIC
- Harada Method
- Hoshin Kanri
- Innovation
- Kaizen
- Lean*
- Metrics*
- Plan, Do, Check, Act*
- Project Management*
- Robust Design/Taguchi Method
- Theory of Constraints
- Total Quality Management (TQM)*
- VOC/Customer Focus
- Work-out
Figure 1: Six-Sigma process improvement through the DMAIC and DMADV methods (also called an affinity diagram): define, measure, analyze, improve/design, control/verify.
Six Sigma Tools & Templates[1]
- 5 Whys
- 5S
- Affinity Diagram/KJ Analysis*
- Analysis of Variance (ANOVA)
- Analytic Hierarchy Process (AHP)
- Brainstorming*
- Calculators
- Capability Indices/Process Capability
- Cause & Effect (fishbone)
- Control Charts
- Design of Experiments (DOE)*
- FMEA*
- Graphical Analysis Charts
- Hypothesis Testing
- Kanban
- Kano Analysis
- Measurement Systems Analysis (MSA)/Gage R&R
- Normality
- Pareto
- Poka Yoke
- Process Mapping
- Project Charter
- Pugh Matrix
- QFD/House of Quality*
- RACI Diagram
- Regression*
- Risk Management
- SIPOC/COPIS
- Sampling/Data
- Simulation
- Software
- Statistical Analysis*
- Surveys
- Templates
- Value Stream Mapping
- Variation
- Wizards
Statistical Methods
The Need for Statistical Tools
The discussion of quality and customer satisfaction show how important yields are to printed circuit boards. Any loss goes to the bottom line. So what are some of the tools to help improve process yields? Process control comes to mind. Chemical processes have always been difficult to control in printed circuits. These uncontrolled factors can always creep into our processes.
All process control is a feedback loop of some sort. Nevertheless, the element that I want to focus on is the control block, or more precisely, the human decisions that make up process control.
Process Control
The first link in process control is the human link. The high-level objectives are to:
- Reduce variations
- Increase first pass yields
- Reduce repair and rework
- Improve quality and reliability
- Improve workmanship
The process control tools and methods that a person may have to work with have been listed already. Of particular importance for the engineer are the statistical tools, as seen in Figure 2. Traditionally, statistical tools have been rather cumbersome and not easy to learn. I have good news: You can now get a good statistics training from the Web, at everyone’s favorite price— free.
Even if your company has good statistical software available, like mine did with Minitab, it is only available as long as you work there. By downloading the NIST/SEMATECH e-Handbook of Statistical Methods[2] and the software Dataplot, you have an equally good tool at home that can travel with you wherever you may work. Your next job may not have any statistical tools!
Page 1 of 2
Suggested Items
Siemens’ Solido SPICE Now Certified for Multiple Leading-edge Samsung Foundry Processes
11/27/2024 | Siemens Digital Industries SoftwareSiemens Digital Industries Software announced that its continued collaboration with longtime customer Samsung Foundry has established a host of new certifications for its recently introduced Solido™ SPICE software, which supports the verification of next-generation analog, mixed-signal, RF, memory, library IP and 3D-IC semiconductor designs.
At Schneider Electric, Future of MES/MOM Lies in the Cloud
11/26/2024 | Schneider ElectricSchneider Electric’s mission is to be the trusted partner for sustainability and efficiency. The company is helping customers across industries unlock efficiency, productivity, and resilience through digital transformation. Schneider Electric is also accelerating its own digital transformation across production facilities.
HPC Customer Engages Sondrel for High End Chip Design
11/25/2024 | SondrelSondrel, a leading provider of ultra-complex custom chips, has announced that it has started front end, RTL design and verification work on a high-performance computing (HPC) chip project for a major new customer.
NEOTech Significantly Improves Wire Bond Pull Test Process
11/25/2024 | NEOTechNEOTech, a leading provider of electronic manufacturing services (EMS), design engineering, and supply chain solutions in the high-tech industrial, medical device, and aerospace/defense markets, proudly announces a major advancement in its wire bond pull testing process, reducing manufacturing cycle time by more than 60% while maintaining industry-leading production yields of over 99.99%.
Standard of Excellence: Hiring for Quality Positions in Manufacturing, Engineering, and Management
11/26/2024 | Anaya Vardya -- Column: Standard of ExcellenceIn continuing my series on finding, signing, and keeping good people for your company, this month we discuss hiring good people for your quality department. Even when hiring was easier, hiring for the quality department has always been especially challenging. It takes a special kind of person: someone with attention to detail, someone ready to stand for his or her convictions, and someone who can stand up under pressure when the company needs to ship product and the quality manager refuses to because it is not up to par. The quality department is the very soul of any manufacturing company.