-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueLearning to Speak ‘Fab’
Our expert contributors clear up many of the miscommunication problems between PCB designers and their fab and assembly stakeholders. As you will see, a little extra planning early in the design cycle can go a long way toward maintaining open lines of communication with the fab and assembly folks.
Training New Designers
Where will we find the next generation of PCB designers and design engineers? Once we locate them, how will we train and educate them? What will PCB designers of the future need to master to deal with tomorrow’s technology?
The Designer of the Future
Our expert contributors peer into their crystal balls and offer their thoughts on the designers and design engineers of tomorrow, and what their jobs will look like.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
Happy’s Essential Skills: The Need for Total Quality Control (Six Sigma and Statistical Tools), Part 2
February 3, 2016 | Happy HoldenEstimated reading time: 8 minutes

To read part one of this series, click here.
Six Sigma
Six Sigma is a disciplined, data-driven approach and methodology for eliminating defects (driving toward six standard deviations between the mean and the nearest specification limit) in any process—from manufacturing to transactional, and from product to service.
The statistical representation of Six Sigma describes quantitatively how a process is performing. To achieve Six Sigma, a process must not produce more than 3.4 defects per million opportunities. A Six Sigma defect is defined as anything outside of customer specifications. A Six Sigma opportunity is then the total quantity of chances for a defect.
The fundamental objective of the Six Sigma methodology is the implementation of a measurement-based strategy that focuses on process improvement and variation reduction through the application of Six Sigma improvement projects. This can be accomplished through two Six Sigma sub-methodologies: Business Process Management Systems (BPMS) and Six Sigma Improvement Methodologies: DMAIC and DMADV (Figure 1).
The Six Sigma DMAIC process (define, measure, analyze, improve, control) is an improvement system for existing business processes falling below specification and looking for incremental improvement. The Six Sigma DMADV process (define, measure, analyze, design, verify) is an improvement system used to develop new processes, products, or defining customer needs at Six Sigma quality levels. It is also called Design for Six Sigma (DFSS). It can also be employed if a current process requires more than just incremental improvement. Both Six Sigma processes are executed by Six Sigma Green Belts and Six Sigma Black Belts, and are overseen by Six Sigma Master Black Belts.
According to the Six Sigma Academy, black belts save companies approximately $230,000 per project and can complete four to six projects per year. General Electric, one of the most successful companies implementing Six Sigma, has estimated benefits on the order of $10 billion during the first five years of implementation. GE first began Six Sigma in 1995 after Motorola and Allied Signal blazed the Six Sigma trail. Since then, thousands of companies around the world have discovered the far-reaching benefits of Six Sigma.
Many frameworks exist for implementing the Six Sigma methodology. Six Sigma consultants all over the world have developed proprietary methodologies for implementing Six Sigma quality, based on the similar change management philosophies and applications of tools. A partial list of 18 framework and methodologies are listed here. Eight will be detailed in this and future columns in this magazine. Additionally, I have include 37 tools and templates in this column and seven more will be detailed in the future. Definitions and examples of all are available at the Six Sigma website[1].
Frameworks and Methodologies
- Balanced Scorecard
- Benchmarking*
- Business Process Management (BPM)*
- Design for Six Sigma (DFSS)*
- DMAIC
- Harada Method
- Hoshin Kanri
- Innovation
- Kaizen
- Lean*
- Metrics*
- Plan, Do, Check, Act*
- Project Management*
- Robust Design/Taguchi Method
- Theory of Constraints
- Total Quality Management (TQM)*
- VOC/Customer Focus
- Work-out
Figure 1: Six-Sigma process improvement through the DMAIC and DMADV methods (also called an affinity diagram): define, measure, analyze, improve/design, control/verify.
Six Sigma Tools & Templates[1]
- 5 Whys
- 5S
- Affinity Diagram/KJ Analysis*
- Analysis of Variance (ANOVA)
- Analytic Hierarchy Process (AHP)
- Brainstorming*
- Calculators
- Capability Indices/Process Capability
- Cause & Effect (fishbone)
- Control Charts
- Design of Experiments (DOE)*
- FMEA*
- Graphical Analysis Charts
- Hypothesis Testing
- Kanban
- Kano Analysis
- Measurement Systems Analysis (MSA)/Gage R&R
- Normality
- Pareto
- Poka Yoke
- Process Mapping
- Project Charter
- Pugh Matrix
- QFD/House of Quality*
- RACI Diagram
- Regression*
- Risk Management
- SIPOC/COPIS
- Sampling/Data
- Simulation
- Software
- Statistical Analysis*
- Surveys
- Templates
- Value Stream Mapping
- Variation
- Wizards
Statistical Methods
The Need for Statistical Tools
The discussion of quality and customer satisfaction show how important yields are to printed circuit boards. Any loss goes to the bottom line. So what are some of the tools to help improve process yields? Process control comes to mind. Chemical processes have always been difficult to control in printed circuits. These uncontrolled factors can always creep into our processes.
All process control is a feedback loop of some sort. Nevertheless, the element that I want to focus on is the control block, or more precisely, the human decisions that make up process control.
Process Control
The first link in process control is the human link. The high-level objectives are to:
- Reduce variations
- Increase first pass yields
- Reduce repair and rework
- Improve quality and reliability
- Improve workmanship
The process control tools and methods that a person may have to work with have been listed already. Of particular importance for the engineer are the statistical tools, as seen in Figure 2. Traditionally, statistical tools have been rather cumbersome and not easy to learn. I have good news: You can now get a good statistics training from the Web, at everyone’s favorite price— free.
Even if your company has good statistical software available, like mine did with Minitab, it is only available as long as you work there. By downloading the NIST/SEMATECH e-Handbook of Statistical Methods[2] and the software Dataplot, you have an equally good tool at home that can travel with you wherever you may work. Your next job may not have any statistical tools!
Page 1 of 2
Suggested Items
Real Time with... IPC APEX EXPO 2025: MKS' Atotech—Leading Innovations in Semiconductor Solutions
03/28/2025 | Real Time with...IPC APEX EXPOIn this interview, Marcy LaRont speaks with Kuldip Johal, CTO, MKS’ Atotech. Based in Boston, MKS operates in vacuum solutions, photonics, and specifically for the Atotech division, material solutions. MKS significantly impacts the semiconductor industry, supplying components for up to 85% of global semiconductor tools and covers processes and materials for 70% of PCB manufacturing steps.
KYZEN to Highlight Stencil and Cleaning Solutions at SMTA Monterrey
03/27/2025 | KYZEN'KYZEN, the global leader in innovative environmentally friendly cleaning chemistries, will exhibit at the SMTA Monterrey Expo & Tech Forum scheduled to take place on Thursday, April 10 at the Cintermex Convention Center in Monterrey, Nuevo León. KYZEN cleaning experts will be on-site highlighting stencil cleaning chemistries KYZEN E5631J and CYBERSOLV C8882.
HARTING 3D-Circuits Leads 3D-MID Innovation: Transforming Consumer Electronics with Advanced Technology
03/27/2025 | PRNewswireThe consumer electronics industry is experiencing a remarkable transformation, propelled by rapid technological advancements and an increasing demand for compact, efficient, and multifunctional devices. Central to this evolution is 3D-MID (Three-Dimensional Mechatronic Integrated Devices) technology, which redefines design standards and drives innovation.
SolderKing Enhances Brainboxes' Electronics Manufacturing with Expert Support and Advanced Materials
03/26/2025 | SolderKingIn modern electronics manufacturing, success relies on more than high-quality soldering materials. Technical knowledge and process expertise are just as crucial for achieving consistent results. SolderKing, a leading UK manufacturer, provides both, combining advanced consumables with specialist support to help manufacturers optimise their soldering processes.
Target Condition: Designing vs. Inventing
03/27/2025 | Kelly Dack -- Column: Target ConditionAfter hearing me rave about IPC APEX EXPO for years, my boss, Chad Orebaugh, joined me at the show for the first time last year. We met at the registration counter, got our badges, and he said, “Okay, Kelly, impress me.”