Scientists Bridge Different Materials by Design
February 8, 2016 | University of LiverpoolEstimated reading time: 1 minute

In an advance reported in Nature Chemistry, scientists at the University of Liverpool have shown that it is possible to design and construct interfaces between materials with different structures by making a bridge between them.
It is usually possible to make well-controlled interfaces when two materials have similar crystal structures, yet the ability to combine materials with different crystal structures has lacked the accurate design rules that increasingly exists in other areas of materials chemistry.
The design and formation of an atomic-scale bridge between different materials will lead to new and improved physical properties, opening the path to new information technology and energy science applications amongst a myriad of science and engineering possibilities – for example, atoms could move faster at the interface between the materials, enabling better batteries and fuel cells.
In 2000, Physics Nobel Prizewinner Herbert Kroemer said “The interface is the device”. Many devices, for example a transistor or blue LED, rely on the creation of very clean, well-ordered interfaces between different materials to work.
Liverpool Materials Chemist, Professor Matthew Rosseinsky, said: “When we try to fit materials together at the atomic scale, we are used to using the sizes of the atoms to decide which combinations of materials will “work” i.e. will produce a continuous well-ordered interface.
“The project team added in consideration of the chemical bonding around the atoms involved, as well as their sizes, as a key design step. This allowed the selection of two materials with different crystal structures yet with sufficient chemical flexibility to grow in a completely ordered manner throughout the interface between them.
“This was achieved by the formation of a unique ordered structure at the interface which did not correspond to either material but contained features of both of them, an atomic-scale bridge.”
The paper, `Interface control by chemical and dimensional matching in an oxide heterostructure’ is published in Nature Chemistry and involves researchers at the University of Antwerp.
The arrangement of chemical bonds in different materials can make it hard to put them together to form a clean interface, like the green and red blocks in the figure. It is possible to construct a flexible block, which will fit with both materials, and bridge the gap between them, like the blue blocks bridge the gap between the red and green ones.
Suggested Items
HyRel Technologies Celebrates Future Innovators: Intern Program Empowers the Next Generation of Engineers and Professionals
05/01/2025 | HyRelHyRel Technologies, a global provider of quick turn semiconductor modification solutions, is proud to spotlight its 7th class of interns in partnership with Peoria Unified School District, featuring three outstanding young women who are already making meaningful contributions to the company's innovative engineering and operations efforts.
SEMI 3D & Systems Summit to Spotlight Trends in Hybrid Bonding, Chiplet Architecture and Geopolitical Dynamics
05/01/2025 | SEMILeading experts in 3D integration and systems for semiconductor manufacturing applications will gather at the annual SEMI 3D & Systems Summit, June 25-27, 2025, in Dresden.
Cadence Expands Design IP Portfolio Optimized for Intel 18A and Intel 18A-P Technologies, Advancing AI, HPC and Mobility Applications
05/01/2025 | Cadence Design SystemsCadence announced a significant expansion of its portfolio of design IP optimized for Intel 18A and Intel 18A-P technologies and certification of Cadence® digital and analog/custom design solutions for the latest Intel 18A process design kit (PDK).
A Visit With ‘Flexperts’ Mark Finstad and Nick Koop
05/01/2025 | Joe Fjelstad, Verdant ElectronicsAt IPC APEX EXPO 2025, I chatted with seasoned flex experts Mark Finstad and Nick Koop about "Flexperts" and their roles as leading educators and in the realm of standards development for this increasingly indispensable electronic interconnection technology. They have been teaching about lessons learned and how to successfully navigate the “seas” of flexible circuits to help their students avoid the hazards that have taken down many of their predecessors in the past.
Siemens Expands Global Electronics Intelligence Reach and Supplyframe Portfolio with Wevolver Acquisition
04/30/2025 | Siemens Digital Industries SoftwareSiemens Digital Industries Software announced its intention to acquire Wevolver, expanding its audience reach, enhancing the Supplyframe product portfolio, and combining digital marketing and integrated campaign programs that include go-to-market support and content creation.