-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current Issue
Power Integrity
Current power demands are increasing, especially with AI, 5G, and EV chips. This month, our experts share “watt’s up” with power integrity, from planning and layout through measurement and manufacturing.
Signal Integrity
If you don’t have signal integrity problems now, you will eventually. This month, our expert contributors share a variety of SI techniques that can help designers avoid ground bounce, crosstalk, parasitic issues, and much more.
Proper Floor Planning
Floor planning decisions can make or break performance, manufacturability, and timelines. This month’s contributors weigh in with their best practices for proper floor planning and specific strategies to get it right.
- Articles
- Columns
- Links
- Media kit
||| MENU - design007 Magazine
DuPont, Taconic and PFC Team Up For High-Speed Flex
March 1, 2016 | Barry Matties, I-Connect007Estimated reading time: 11 minutes
At DesignCon, I sat down with three flex circuit specialists: Glenn Oliver of DuPont, Tom McCarthy of Taconic, and Steve Kelly of PFC Flexible Circuits. Our discussion covered a lot of territory, most notably the findings they described in the paper they were about to present later that day at DesignCon, and the future of flex, as they see it.
Barry Matties: Please start by telling me a little bit about your paper.
Glenn Oliver: One thing that is not well known is that flexible circuit technology can be applied to high-speed and high-frequency data transmission. DuPont, as well as Taconic and PFC, collaborated in this effort, because there's really no one solution provider who can provide the entire spectrum of what's needed.
For instance, one of the products that we make at DuPont is Pyralux® copper clad laminate. This product has a very good, long-standing reputation in the flex circuit world. What we found, though, is that we didn't really have a low-loss adhesive that was really tailored for high-frequency applications. Taconic actually has that piece of the puzzle and I’ll let Tom talk about that.
The other thing is that fabricators are an incredibly important piece to it, and one of the fabricators leading the way is Steve Kelly at PFC, who really has a lot of understanding and expertise in the area of high frequency flex. This is actually low-frequency for Steve, because he works a lot in the optical business. It's really in his wheelhouse and so it's a natural collaboration, but I'm going to defer to Tom to tell us a little bit about the adhesive technology and how that enables what we're doing.
Tom McCarthy: Taconic specializes in RF and microwave frequencies. We sell products out to 77 GHz, so most of our core competency historically has been rigid boards or multilayers or microstrip, double-sided boards. In 2008, we developed a product called FastRise™, which is a non-reinforced pre-preg. This was developed for the rigid marketplace, but it looks a lot like DuPont's offerings in the flex market space, in the sense that it's based on film technology. At some point we decided to try to make a flexible version of our FastRise™ prepreg that could be used in the flex industry. Again, it looks a lot like the approaches that DuPont takes with thermoplastic films in the flexible marketplace.
The frequencies have been going up incredibly in the rigid marketplace. The frequency has been going from 28 Gbps to 56 Gbps in the digital world, but in the automotive world, collision avoidance radar is 77 GHz, so we're used to tackling these kinds of frequencies. Now it's just been more taking a closer look at what the flex world needs, because the same demands for higher speeds are taking place in the flex world. So it puts a lot of pressure on all the material vendors and the fabricators to create structures that can meet higher frequencies.
Matties: Steve, as a fabricator, what are the challenges that you're faced with?
Steve Kelly: Primarily, we've been working in the high-speed market since around 2000 and at that time we started working with various companies to build 10 GHz circuits. That was pretty standard technology back then. DuPont had the materials, other people had the materials, but DuPont had the best stuff. We made that for quite a while and then in the last two to three years people started to move into primarily 18 GHz up to 50 GHz. These are test equipment manufacturers and what I call the optical companies—people who are making the network systems for 4G−5G and so on. We started to look into these new materials. DuPont came up with a material called TK three or four years ago. We started to build with that. We are happy with that, but then eventually you go from “Now I want a multilayer” to “Then I want a rigid-flex,” and then you've got to start bonding it all together. We needed the Taconic bondplys and DuPont TK, or AP material and some kind of cover-lay to put it all together. We've been working back and forth now for, what, two years, Tom?
McCarthy: Yes, a couple of years.
Kelly: He's made a couple of different products, and the new stuff seems to be working pretty well. It's not the easiest stuff in the world to work with, but as life goes on you get better and better at it. It's not normal fabrication.
Oliver: The ultimate would be encapsulating your circuit in Teflon®, like in a high frequency cable. But the things that make Teflon® great from a signal integrity standpoint also make it really challenging from a processing standpoint. A huge advantage of Teflon® is that it is inert to most chemistry. That’s great, but how do you remove Teflon® from where you don't want it after lamination? The real enabling part and why this collaboration is so noteworthy is that DuPont obviously has the expertise with Kapton® and Teflon®, but Taconic has a missing piece of the puzzle in that they have a really good low-loss adhesive. This adhesive doesn't require the high temperature processing that's required for fusion-bonded Teflon® fabrication. It's not the “magic bullet” for every circuit design, but it’s a great solution when you need high-frequency and you need the flexibility for a printed circuit.
Matties: Where is the limit before it just becomes an optical solution?Page 1 of 3
Testimonial
"Your magazines are a great platform for people to exchange knowledge. Thank you for the work that you do."
Simon Khesin - Schmoll MaschinenSuggested Items
Trouble in Your Tank: Understanding Interconnect Defects, Part 1
11/04/2025 | Michael Carano -- Column: Trouble in Your TankThis month, I’ll address interconnect defects (ICDs). While this defect continues to rear its ugly head, don’t despair. There are solutions, most of which center on process control and understanding the relationship of the chemistry, materials, and equipment. First, though, let’s discuss ICDs.
Target Condition: Distribution of Power—Denounce the Ounce
11/05/2025 | Kelly Dack -- Column: Target ConditionHave you ever wondered why the PCB design segment uses ounces to describe copper thickness? There’s a story behind all of this—a story that’s old, dusty, and more than a little absurd. (Note that I didn’t add “Like many of us.”) Legend has it that back in the days of copper tinkers and roofing tradesmen, the standard was set when a craftsman hammered out a sheet of copper until it weighed one ounce, when its area conveniently matched the square of the king’s foot.
WestDev Announces Advanced Thermal Analysis Integration for Pulsonix PCB Design Suite
10/29/2025 | WestDev Ltd.Pulsonix, the industry-leading PCB design software from WestDev Ltd., announced a major enhancement to its design ecosystem: a direct interface between Pulsonix and ADAM Research's TRM (Thermal Risk Management) analysis software.
Designers Notebook: Power and Ground Distribution Basics
10/29/2025 | Vern Solberg -- Column: Designer's NotebookThe principal objectives to be established during the planning stage are to define the interrelationship between all component elements and confirm that there is sufficient surface area for placement, the space needed to ensure efficient circuit interconnect, and to accommodate adequate power and ground distribution.
Episode 6 of Ultra HDI Podcast Series Explores Copper-filled Microvias in Advanced PCB Design and Fabrication
10/15/2025 | I-Connect007I-Connect007 has released Episode 6 of its acclaimed On the Line with... American Standard Circuits: Ultra High Density Interconnect (UHDI) podcast series. In this episode, “Copper Filling of Vias,” host Nolan Johnson once again welcomes John Johnson, Director of Quality and Advanced Technology at American Standard Circuits, for a deep dive into the pros and cons of copper plating microvias—from both the fabricator’s and designer’s perspectives.