Special Ink Paves the Way for Cheap Polymer Solar Cells
March 2, 2016 | Technical University of DenmarkEstimated reading time: 1 minute

Polymer solar cells are a promising alternative to tradional silicon solar cells, having the potential of a substantially lower production cost. A polymer solar cell consists of a number of thin layers deposited one by one on a carrier foil using roll-to-roll processes known from the printing industry. Each layer is printed using a particular, highly specialised ink containing the required material. Today, good inks exist for all the layers of the solar cell, except for the important active layer in which the energy of the sun is converted into electrical energy. The lack of an ink for the active layer with the necessary properties, and in the quantities needed industrial production, is a major hindrance to the spread of the technology.
The purpose of the project INKA – Inks for large-scale processing of polymer solar cells is to develop an ink for the printing of the active layer of the solar cell, but also to ensure high compatibility between this ink and industrial printing machines. The research and development will start from the requirements of the solar cell and its manufacture. These requirements are then translated into specific requirements to the composition and print properties of the ink and to the printing machine.
The main result of the project will be a robust ink enabling mass production of polymer solar cells with an efficiency of at least six percent in the conversion of solar energy into electricity. This is more than double the present efficiency. To reach this ambitious goal it is necessary to develop a polymer which efficiently can capture and convert the solar energy to electrical energy, and which can be realised in an industrially printed ink. This means that the polymer must be able to be manufactured in large quantities and with fully scalable methods. Industrial printability also implies automation of the printing process to increase reproducibility and reduce waste.
This will be a significant step towards the development af a competitive industry based on the DTU technology for mass production of polymer solar cells, with applications ranging from consumer electronics to large-scale energy production.
Suggested Items
Real Time with... IPC APEX EXPO 2025: Emerging Trends in Design and Technology
04/16/2025 | Real Time with...IPC APEX EXPOAndy Shaughnessy speaks with IPC design instructor Kris Moyer to discuss emerging design trends. They cover UHDI technology, 3D printing, and optical data transmission, emphasizing the importance of a skilled workforce. The role of AI in design is highlighted, along with the need for understanding physics and mechanics as designs become more complex. The conversation concludes with a focus on enhancing math skills for better signal integrity.
Real Time with... IPC APEX EXPO 2025: Transition Automation Focusing on Security Coatings and Squeegee Technology
04/16/2025 | Real Time with...IPC APEX EXPOMark Curtin, President of Transition Automation, gives an update on recent innovations at his company. He highlights a record sales month and their new focus on security coatings to fight counterfeiting. Mark explains the engineering behind their durable squeegees, the importance of maintenance, and the value of considering overall costs over just price.
Elephantech: For a Greener Tomorrow
04/16/2025 | Marcy LaRont, PCB007 MagazineNobuhiko Okamoto is the global sales and marketing manager for Elephantech Inc., a Japanese startup with a vision to make electronics more sustainable. The company is developing a metal inkjet technology that can print directly on the substrate and then give it a copper thickness by plating. In this interview, he discusses this novel technology's environmental advantages, as well as its potential benefits for the PCB manufacturing and semiconductor packaging segments.
Flexible Thinking: Flexible Circuit Technology—Looking Back and Forward
03/03/2025 | Joe Fjelstad -- Column: Flexible ThinkingFlexible circuit technology came on the scene as a solution largely for niche applications, however, the technology has emerged in recent years as a cornerstone of modern electronics. Today, the technology is enabling a broad range of new product designs across industries. From wearable devices and medical implants to foldable smartphones and numerous automotive applications, flexible circuits are arguably at the heart of much of the next generation of innovations.
Yamaha Motor to Launch New YRP10e Entry-Level Solder Paste Printer
02/26/2025 | Yamaha Motor Europe Robotics, SMT SectionYamaha Motor Europe Robotics SMT Section announces that it will release the new YRP10e solder paste printer on April 1 of this year.