Nanostructures Deliver Higher-speed, Lower-power Optical Devices
March 16, 2016 | University of CincinnatiEstimated reading time: 4 minutes
With new technology getting smaller and smaller, requiring lower power, University of Cincinnati physics research points to new robust electronic technologies using quantum nanowire structures.
The semiconductor nanowires may lead to advances in sensitive electronic technology including heat detecting optical infrared sensors and biomedical testing, all of which can fit inside small electrical devices.
Supported by multiple National Science Foundation grants, the UC research team is working with a collaborative team of physicists, electronic materials engineers and doctoral students from around the world -- all to perfect the growth and development of crystalline nanowires that could form the backbone of new nanotechnologies.
But to fully apply this technology to modern devices, UC researchers are first looking closely -- on a fundamental level -- at how energy is distributed and measured along thin-strand nanowires so small that thousands of them could theoretically fit inside a human hair.
"Now that we know the technology can be developed, we need to understand exactly how the electrical processes work inside the nanowire cores," say Howard Jackson and Leigh Smith, professors of physics at the University of Cincinnati. "After finally perfecting a standardized process for growing and developing crystalline nanowire fibers with our partners at the Australian National University in Canberra, we have been able to take it one step further.
"Using a combination of materials like indium gallium arsenide and indium phosphide, we can develop thin nanowire cores with protective outer shells."
It turns out that these unique nanowire materials have unusually large spin orbit interactions, which the researchers find can conduct electricity really well and may allow the use of spin to enable new computing paradigms.
Jackson and Smith are presenting these findings at the American Physical Society Conference, in Baltimore, March 16, titled, "Exploring Dynamics and Band Structure in Mid Infrared GaAsSb and GaAsSb/InP Nanowire Heterostructures."
SMALL YET MIGHTY
The researchers claim the secret to the success of this multi-collaborative effort is in the combination of materials used to create the nanowires. Initially grown at the Australian National University in Canberra, the nanowires are sprouted from a combination of beads of molten gold scattered across a particular surface.
As the process is heated inside a chamber using indium gallium arsenide gases, long microscopically thin core fibers sprout up from between the controlled surface environment.
Other material combinations are then introduced to form an outer shell acting as a sheath around each core, resulting in quantum nanowire semiconducting heterostructures all uniform in size, shape and behavior.
After the fibers are shipped across the globe to Cincinnati, Jackson, Smith and their team of doctoral students are then able to use sophisticated equipment to measure the electrical and photovoltaic potentials of each fiber along its surface.
In earlier research, the collaborative team found extrinsic and intrinsic problems when the fiber cores did not have the outer sheath-like shells.
"If we don't have this outer sheath, the nanowires have a very short energy lifetime, says Jackson. "When we surround the core with this sheath, the energy lifetime can go up by an order or two orders of magnitude."
And while gallium arsenide alone is a very common semiconductor, its energy gap is large and in the visible range, which absorbs light. To achieve success in detecting optical heat or infrared, the team says using indium gallium arsenide fibers have smaller energy gaps that can be used successfully in optical detector devices. doctoral student in physics lab with laser lights
"The goal for one of our research equipment grants is to work with the local L3 Cincinnati Electronics Company, which makes infrared (small gap) detectors for night-vision imaging for military applications," says Smith. "Future direct applications for this type of technology also include medical devices that detect body heat, as well as remote sensors installed in iphones that can be used for environmental purposes that detect and measure heat loss in houses."
Page 1 of 2
Suggested Items
Forge Nano Secures $40M to Scale U.S. Battery Manufacturing and Commercial Semiconductor Equipment Businesses
05/02/2025 | Forge NanoForge Nano, Inc., a technology company pioneering domestic battery and semiconductor innovations, announced the successful close of $40 million in new funding.
MICROOLED Announces Partnership with Vortex Optics and Brand New US Headquarters
05/02/2025 | BUSINESS WIREMICROOLED Inc., the leading global supplier of AMOLED displays, is proud to announce their partnership with Vortex Optics to advance the development of high-performance weapon sights for optical sighting systems.
Indium Wins EM Asia Innovation Award
05/01/2025 | Indium CorporationIndium Corporation, a leading materials provider for the electronics assembly market, recently earned an Electronics Manufacturing (EM) Asia Innovation Award for its new high-reliability Durafuse® HR alloy for solder paste at Productronica China in Shanghai.
Elephantech, Logitech Together Drive Disruptive Electronics Innovation
05/01/2025 | ElephantechElephantech Inc. announced a groundbreaking collaboration with Logitech International to revolutionize peripherals manufacturing and the printed circuit board (PCB) industry.
Summit Interconnect Hollister Elevates PCB Prototyping with New TiTAN Direct Imaging System from Technica USA
05/01/2025 | Summit Interconnect, Inc.Summit Interconnect’s Hollister facility has recently enhanced its quick-turn PCB prototyping capabilities by installing the TiTAN PSR-H Direct Imaging (DI) system.