-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueThe Essential Guide to Surface Finishes
We go back to basics this month with a recount of a little history, and look forward to addressing the many challenges that high density, high frequency, adhesion, SI, and corrosion concerns for harsh environments bring to the fore. We compare and contrast surface finishes by type and application, take a hard look at the many iterations of gold plating, and address palladium as a surface finish.
It's Show Time!
In this month’s issue of PCB007 Magazine we reimagine the possibilities featuring stories all about IPC APEX EXPO 2025—covering what to look forward to, and what you don’t want to miss.
Fueling the Workforce Pipeline
We take a hard look at fueling the workforce pipeline, specifically at the early introduction of manufacturing concepts and business to young people in this issue of PCB007 Magazine.
- Articles
Article Highlights
- Columns
Search Console
- Links
- Media kit
||| MENU - pcb007 Magazine
Estimated reading time: 9 minutes

Contact Columnist Form
Design of Experiments
Figure 2: An example of factorial design of experiments (DOE) in printed circuit manufacturing to minimize innerlayer shifting during lamination.
The second experiment, in Figure 3, uses optimizing photoresist exposure, developing and etching to provide the highest production yield. The variable and levels were a full factorial design of three variables at three levels (center point):
1. Exposure energy in mjoules: 70, 50 & 30
2. Developer speed in inches per minute: 45, 40 & 35
3. Etcher speed in inches per minute: 45, 40 & 35.
The variables were chosen with the center point being the current production process: 50 mjoules, 40 in/min developer and 40 in/min etcher. The highest yield was 95% using slower developer speed, lower exposure intensity, and the slower etcher. Analysis shows that the developer speed has the greatest effect on yield and interacts with etcher speed.
Figure 3: An example of factorial design of experiments (DOE) in printed circuit manufacturing to optimize yield in exposure, developing and etch.
Page 3 of 5
More Columns from Happy’s Tech Talk
Happy’s Tech Talk #37: New Ultra HDI MaterialsHappy’s Tech Talk #36: The LEGO Principle of Optical Assembly
Happy’s Tech Talk #35: Yields March to Design Rules
Happy’s Tech Talk #34: Producibility and Other Pseudo-metrics
Happy’s Tech Talk #33: Wet Process Management and Control
Happy’s Tech Talk #32: Three Simple Ways to Manage and Control Wet Processes
Happy’s Tech Talk #31: Novel Ultra HDI Architectures
Happy’s Tech Talk #30: The Analog Computer