-
-
News
News Highlights
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current Issue
The Legislative Outlook: Helping or Hurting?
This month, we examine the rules and laws shaping the current global business landscape and how these factors may open some doors but may also complicate business operations, making profitability more challenging.
Advancing the Advanced Materials Discussion
Moore’s Law is no more, and the advanced material solutions to grapple with this reality are surprising, stunning, and perhaps a bit daunting. Buckle up for a dive into advanced materials and a glimpse into the next chapters of electronics manufacturing.
Inventing the Future With SEL
Two years after launching its state-of-the-art PCB facility, SEL shares lessons in vision, execution, and innovation, plus insights from industry icons and technology leaders shaping the future of PCB fabrication.
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
Happy’s Essential Skills: Design of Experiments
March 17, 2016 | Happy HoldenEstimated reading time: 9 minutes
I guess I was lucky to be exposed to engineering statistics early in my college education. I never took a statistics course from the math department; if I had I might have thought it to be boring. Instead, it came as part of the chemical engineering basics. Since there is no “higher math” in most statistics, it is a good introductory course for engineers and essential to analyze lab and experimental results that will be part of the science and engineering education. My first design of experiment was done by long-hand; then, we did it by punched cards, and finally, with our slide rules (guess that dates me!). It wasn’t until the HP PCB problem solving that I wrote a basic program to conduct my DOEs on an HP 2116 computer.
Critical to DOE was the type of variables. In production, qualitative factors can be more significant than quantitative factors. Important quantitative factors (variables) are usually controlled, but qualitative variables can change without notice. Qualitative factors include: time of the year, day of the week, production shifts, production line, individual workers or machines, supplier sources, maintenance frequency, and even source of water. If you remember in my second column, and Figure 6 contained therein, for DOE with “factors not all being quantitative,” “screening experiments” are called for, such as described by Plackett-Berman[1] and in Fractional Factorial[2] (center boxes in Figure 1). Other application areas are comparative, modeling and optimizing.
Screening experiments (also called fractional factorial) are test plan used for an initial scan of problems having a large number—usually six or more—of presumed independent variables. The purpose of such plans is to determine which variables have the largest effects on the dependent variables. Results show only main or first-order effects (interactions), only the sensitivity of Y to a significant change in X1, X2 or X3, etc. Generally, interaction and second-order effects are not detected in screening plans.
Once the independent variables have been reduced to four or less, full factorial experiments can be conducted to understand all interactions and if the responses are non-linear and linear equations can be developed. Further experimentation can be conducted as ‘evolutionary operations’ to discover optimum settings and performances.
In the HP PCB problems, indeed the causes of the problems were an interaction of Monday vs. Friday, Day Shift vs. Graveyard Shift, process tank #1 vs. #4, and chemical supplier source. It was the qualitative variables that were at the Root Cause! A “one-at-a-time” experimentation couldn’t duplicate the root cause.
Some Examples
The next three figures show four different PCB process DOE results. The first, in Figure 2, is an experiment to minimize shifting of innerlayers during multilayer lamination. The variable and levels were a full factorial design of three variables at two levels:
1. Vented panel borders: with venting and without venting
2. Tooling methods for layup: ¼-inch holes and four 1/8-inch slots-centerline
3. Lamination pressure: 294 PSI & 344 PSI
The results are the image shift in microns. The lowest shift was 76 μm using vented borders, ¼-inch peripheral holes and the higher pressure. Analysis shows that the tooling method has the most positive effect on shifting and interacts with panel venting (V).
Figure 2: An example of factorial design of experiments (DOE) in printed circuit manufacturing to minimize innerlayer shifting during lamination.
The second experiment, in Figure 3, uses optimizing photoresist exposure, developing and etching to provide the highest production yield. The variable and levels were a full factorial design of three variables at three levels (center point):
1. Exposure energy in mjoules: 70, 50 & 30
2. Developer speed in inches per minute: 45, 40 & 35
3. Etcher speed in inches per minute: 45, 40 & 35.
The variables were chosen with the center point being the current production process: 50 mjoules, 40 in/min developer and 40 in/min etcher. The highest yield was 95% using slower developer speed, lower exposure intensity, and the slower etcher. Analysis shows that the developer speed has the greatest effect on yield and interacts with etcher speed.
Figure 3: An example of factorial design of experiments (DOE) in printed circuit manufacturing to optimize yield in exposure, developing and etch.
The third experiment, in Figure 4, serves to find the highest hole quality in a multilayer board. The variables and levels were a full factorial design of four variables at three levels:
1. Drill methods: (-) resharpened 4-8 times (0) resharpened
2. Drill diameter: (-) 0.008” (0) .014” (+) 0.020”
3. Infeed rate: (-) xx in. per min. (0) xx in. per min (+) xx in. per min
4. Construction: (-)Std. Foil-Lam (0) Thick-prepreg w/foil-Lam (+) Std. Core-Lam.
The results are the hole quality (rms roughness %) and max. innerlayer mushrooming in microns.
The best quality was 0 microns mushrooming and
The fourth experiment, shown in Figure 4, is to further find the highest hole quality and to look at drilling productivity. The variables and levels were a fractional factorial design of three variables at two levels:
1. Drill method: (-) new drills (+) resharpened 6 times
2. Stack height: (-) 1 high (+) 3 high
3. Panel venting dams: (-) no-flow dams (+) full venting dams
The results are the hole quality (rms roughness %) and max. innerlayer mushrooming in microns.
The best quality was < 4% rms hole-wall roughness using a plane of new drill bits for stacks of 1-high with any appropriate venting dams. Analysis shows that the old resharpened drills could be used with drill stacks 3-high and has a usable hole-wall roughness but it interacts with drill infeed rates.
Figure 4: Two more examples of DOE for hole quality in multilayer boards. Full factorial design on the left was conducted to optimize drilled hole quality. Fractional factorial DOE on the right further optimizes hole quality and production productivity.
Notice that this last experiment was a fractional factorial. The power of a scanning experiment using the fractional factorial methodology is that N number of variables can be reviewed with only N+2 experiments. This is useful to find main effects, but not interaction, while later experiments will provide examination of interactions and optimization.
Page 2 of 3
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
New Podcast Episode: “Bonding Innovation: How Adhesives and Coatings Are Powering the Next Generation of Electronics”
11/05/2025 | I-Connect007I-Connect007 has released of a new episode in its Voices of the Industry podcast series, titled “Bonding Innovation: How Adhesives and Coatings Are Powering the Next Generation of Electronics.” Hosted by Nolan Johnson, this insightful discussion dives deep into the evolving world of adhesives and coatings—materials that are redefining performance, reliability, and design in modern electronics manufacturing. Dymax's Doug Katze, a leading expert in adhesive technologies, delivers what can only be described as a master class on how these critical materials are adapting to meet rapidly changing market demands.
Target Condition: Distribution of Power—Denounce the Ounce
11/05/2025 | Kelly Dack -- Column: Target ConditionHave you ever wondered why the PCB design segment uses ounces to describe copper thickness? There’s a story behind all of this—a story that’s old, dusty, and more than a little absurd. (Note that I didn’t add “Like many of us.”) Legend has it that back in the days of copper tinkers and roofing tradesmen, the standard was set when a craftsman hammered out a sheet of copper until it weighed one ounce, when its area conveniently matched the square of the king’s foot.
NEDME 2025 Draws Strong Northwest Crowd, Builds on Tradition of Regional Collaboration
10/31/2025 | NEDMEThe NW Electronics Design & Manufacturing Expo (NEDME) 2025 once again brought together the Pacific Northwest community for a full day of learning, networking, and industry connections.
Keysight Advances Quantum Engineering with New System-Level Simulation Solution
10/30/2025 | BUSINESS WIREKeysight Technologies, Inc. announced the release of Quantum System Analysis, a breakthrough Electronic Design Automation (EDA) solution that enables quantum engineers to simulate and optimize quantum systems at the system level.
WestDev Announces Advanced Thermal Analysis Integration for Pulsonix PCB Design Suite
10/29/2025 | WestDev Ltd.Pulsonix, the industry-leading PCB design software from WestDev Ltd., announced a major enhancement to its design ecosystem: a direct interface between Pulsonix and ADAM Research's TRM (Thermal Risk Management) analysis software.