Theoretical Proof Could Lead to More Reliable Nanomachines
March 21, 2016 | MITEstimated reading time: 4 minutes

The world within a cell is a chaotic space, where the quantity and movement of molecules and proteins are in constant flux. Trying to predict how widely a protein or process may fluctuate is essential to knowing how well a cell is performing. But such predictions are hard to pin down in a cell’s open system, where everything can look hopelessly random.
Now physicists at MIT have proved that at least one factor can set a limit, or bound, on a given protein or process’ fluctuations: energy. Given the amount of energy that a cell is spending, or dissipating, the fluctuations in a particular protein’s quantity, for example, must be within a specific range; fluctuations outside this range would be deemed impossible, according to the laws of thermodynamics.
This idea also works in the opposite direction: Given a range of fluctuations in, say, the rate of a motor protein’s rotation, the researchers can determine the minimum amount of energy that the cell must be expending to drive that rotation.
“This ends up being a very powerful, general statement about what is physically possible, or what is not physically possible, in a microscopic system,” says Jeremy England, the Thomas D. and Virginia W. Cabot Assistant Professor of Physics at MIT. “It’s also a generally applicable design constraint for the architecture of anything you want to make at the nanoscale.”
For instance, knowing how energy and microscopic fluctuations relate will help scientists design more reliable nanomachines, for applications ranging from drug delivery to fuel cell technology. These tiny synthetic machines are designed to mimic a molecule’s motor-like behavior, but getting them to perform reliably at the nanoscale has proven extremely difficult.
“This is a general proof that shows that how much energy you feed the system is related in a quantitative way to how reliable you’ve made it,” England says. “Having this constraint immediately gives you intuition, and a sort of road-ready yardstick to hold up to whatever it is you’re trying to design, to see if it’s feasible, and to direct it toward things that are feasible.”
England and his colleagues, including Physics of Living Systems Fellow Todd Gingrich, postdoc Jordan Horowitz, and graduate student Nikolay Perunov, have published their results this week in Physical Review Letters.
Making sense of microscopic motions
The researchers’ paper was inspired by another study published last summer by scientists in Germany, who speculated that a cell’s energy dissipation might shape the fluctuations in certain microscopic processes. That paper addressed only typical fluctuations. England and his colleagues wondered whether the same results could be extended to include rare, “freak” instances, such as a sudden, temporary spike in a cell’s protein quantity.
The team started with a general master equation, a model that describes motion of small systems, be it in the number or directional rotation for a given protein. The researchers then employed large deviation theory, which is a mathematical technique that is used to determine the probability distributions of processes that occur over a long period time, to evaluate how a microscopic system such as a rotating protein would behave. They then calculated, essentially, how the system fluctuated over a long period of time — for instance, how often a protein rotated clockwise versus counterclockwise — and then developed a probability distribution for those fluctuations.
Page 1 of 2
Suggested Items
MICROOLED Announces Partnership with Vortex Optics and Brand New US Headquarters
05/02/2025 | BUSINESS WIREMICROOLED Inc., the leading global supplier of AMOLED displays, is proud to announce their partnership with Vortex Optics to advance the development of high-performance weapon sights for optical sighting systems.
LG Innotek to Build FC-BGA into 700 Million USD Business with State-of-the-art Dream Factory
05/01/2025 | PR NewswireLG unveiled the Dream Factory, a hub for the production of FC-BGAs (Flip Chip Ball Grid Arrays), the company's next-generation growth engine, to the media for the first time and announced it on the 30th April.
SEMI 3D & Systems Summit to Spotlight Trends in Hybrid Bonding, Chiplet Architecture and Geopolitical Dynamics
05/01/2025 | SEMILeading experts in 3D integration and systems for semiconductor manufacturing applications will gather at the annual SEMI 3D & Systems Summit, June 25-27, 2025, in Dresden.
The EEcosystem and Dr. Eric Bogatin Launch Free Masterclass for Electronics Engineers
05/01/2025 | The EEcosystemThe EEcosystem, a podcast media and education brand serving professional electronics engineers, is proud to announce the launch of a new online learning platform: The EEcosystem Electronics Masterclass. The platform debuts with Transmission Lines 101, a free course created in partnership with world-renowned signal integrity expert Dr. Eric Bogatin. The course will be available starting May 1, 2025.
Kasuo Electronics Launches Advanced Testing Laboratory to Strengthen Global Supply Chain Quality Assurance
04/29/2025 | BUSINESS WIREKasuo Electronics Co., Ltd, a globally recognized trader of electronic components, has officially operationalized its state-of-the-art testing laboratory.