Silicon Nanoparticles Pave the Way Towards Nanoscale Light Emitters
May 5, 2016 | ITMO UniversityEstimated reading time: 4 minutes
Scientists from Moscow Institute of Physics and Technology (MIPT), ITMO University (St. Petersburg), and their colleagues from the Australian National University have experimentally demonstrated that silicon nanoparticles are able to significantly increase the intensity of what is known as the Raman effect. These findings will help to develop nanoscale light emitters and nanoscale amplifiers for fibre optic telecommunications lines. The results of the study have been published in Nanoscale ("Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response").
Usually, when light interacts with matter, it does not change colour, i.e., the wavelength of the light remains the same. There are exceptions however, and one of them is the so-called Raman effect. In this case, incident light interacts with a molecule in such a way that energy of the molecule increases by a value corresponding to the vibrational motion of the molecule. The molecule then re-emits a photon which has smaller energy and consequently a longer wavelength, meaning that the light becomes “redder”. This process may also occur in bulk crystals.
Figure 1. Diagram of the Raman effect. The incident photon excites the vibrational level of the molecule (marked in red), which causes the molecule to emit the photon at a different wavelength. Image courtesy of the authors of the study.
The discovery of the Raman effect indicated emergence of a whole new field of applied science – Raman spectroscopy. This method allows to detect even single molecules of chemical substances. In addition, the Raman effect is widely used today in fibre optic networks for signal amplification.
Until now, waveguides and spherical microcavities, whose size is larger than the emission wavelength, have been mainly employed for the Raman effect enhancement. However,the pursuit for miniaturization of telecommunication devices requires development of smaller optical components – they consume less energy and are easier to “pack” on an electronic or optical chip.
The group of scientists, including Denis Baranov from MIPT (a postgraduate student of the Problems of Physics and Power Engineering Department) looked for ways of miniaturizing Raman amplifiers.
Figure 2. A schematic view of resonant Raman scattering by a nanoparticle. The incident radiation excites the resonance of the particle – magnetic dipole mode shown by the blue arrow. The electric field of the magnetic mode interacts with the crystal lattice vibrations in the resonant silicon nanoparticle, which causes a change in the wavelength of the scattered light. Image courtesy of the authors of the study.
The researchers used silicon nanospheres which support optical resonances - the so-called Mie resonances. They exist in any spherical particles and the resonant wavelengths of these resonances depend on the particle size. One of the resonances which occurs for the largest wavelength is the magnetic dipole resonance – its wavelength is generally comparable to the diameter of the particle. In silicon, however, due to its large refractive index, magnetic dipole resonance is observed in the optical range (at wavelengths longer 300 nanometres) for nanoparticles with a diameter of approximately 100 nanometres.
This fact allows to use tiny silicon nanoparticles as a miniature element to enhance various optical phenomena, including spontaneous light emission, enhanced light absorption, and high harmonic generation.
Figure 3. Dark-field image of an array of silicon particles of different diameters used in the experiment. Inset: an image of an individual particle as seen under an electron microscope. Image courtesy of the authors of the study.
Page 1 of 2
Suggested Items
Rules of Thumb: Design007 Magazine, November 2024
11/11/2024 | I-Connect007 Editorial TeamRules of thumb are everywhere, but there may be hundreds of rules of thumb for PCB design. They’re built on design formulas, fabricators’ limitations, and tribal knowledge. And unfortunately, some longtime rules of thumb should be avoided at all costs. How do we separate the wheat from the chaff, so to speak?
Connect the Dots: Best Practices for Prototyping
09/21/2023 | Matt Stevenson -- Column: Connect the DotsPCB prototyping is a critical juncture during an electronic device’s journey from concept to reality. Regardless of a project’s complexity, the process of transforming a design into a working board is often enlightening in terms of how a design can be improved before a PCB is ready for full production.
The Drive Toward UHDI and Substrates
09/20/2023 | I-Connect007 Editorial TeamPanasonic’s Darren Hitchcock spoke with the I-Connect007 Editorial Team on the complexities of moving toward ultra HDI manufacturing. As we learn in this conversation, the number of shifting constraints relative to traditional PCB fabrication is quite large and can sometimes conflict with each other.
Asia/Pacific AI Spending Surge to Reach a Projected $78 Billion by 2027
09/19/2023 | IDCAsia/Pacific spending on Artificial Intelligence (AI) ), including software, services, and hardware for AI-centric systems will grow to $78.4 billion in 2027, according to International Data Corporation's latest Worldwide Artificial Intelligence Spending Guide.
Intel to Sell Minority Stake in IMS Nanofabrication Business to TSMC
09/13/2023 | IntelIntel Corporation announced that it has agreed to sell an approximately 10% stake in the IMS Nanofabrication business to TSMC. TSMC’s investment values IMS at approximately $4.3 billion, consistent with the valuation of the recent stake sale to Bain Capital Special Situations.