Silicon Nanoparticles Pave the Way Towards Nanoscale Light Emitters
May 5, 2016 | ITMO UniversityEstimated reading time: 4 minutes
The scientists then tested how the intensity of the Raman emission depends on the diameter of a silicon particle. The intensity of the Raman emission was at a maximum at the resonant diameter of the particle, which was entirely consistent with the theory the authors had developed. The intensity of Raman emission of resonant particles was more than 100 times greater than that of non-resonant particles with other diameters.
Figure 4. The experimentally measured (points) and theoretically predicted (lines) Raman emission enhancement spectrum for particles of different diameters. The maximum point corresponds to the excitation of magnetic dipole resonance of a silicon nanoparticle. Inset: the electric field distribution inside a resonant particle. Image courtesy of the authors of the study.
“The Raman effect is incredibly useful in practice, and will help not only in detecting microscopic amounts of chemical compounds, but also in transmitting information over long distances. Because of the pursuit for smaller electronic and optical devices, it is becoming increasingly important for us to look for nanostructures that are able to enhance this effect. Our observations have revealed a potential candidate – silicon nanoparticles,” said Denis Baranov, a post-graduate student of MIPT and one of the authors of the paper, when commenting on the results.
Silicon nanoparticles could serve as a basis for the development of miniature optical amplifiers for fibre optic networks. In the future, these particles could provide a platform for building a compact nanolaser using the stimulated Raman scattering, which offers prospects for very interesting applications in medicine and biomicroscopy. In particular, detecting signals of the Raman emission from particles in the human body will allow specialists to track the movement of drug molecules.
Page 2 of 2Suggested Items
Rules of Thumb: Design007 Magazine, November 2024
11/11/2024 | I-Connect007 Editorial TeamRules of thumb are everywhere, but there may be hundreds of rules of thumb for PCB design. They’re built on design formulas, fabricators’ limitations, and tribal knowledge. And unfortunately, some longtime rules of thumb should be avoided at all costs. How do we separate the wheat from the chaff, so to speak?
Connect the Dots: Best Practices for Prototyping
09/21/2023 | Matt Stevenson -- Column: Connect the DotsPCB prototyping is a critical juncture during an electronic device’s journey from concept to reality. Regardless of a project’s complexity, the process of transforming a design into a working board is often enlightening in terms of how a design can be improved before a PCB is ready for full production.
The Drive Toward UHDI and Substrates
09/20/2023 | I-Connect007 Editorial TeamPanasonic’s Darren Hitchcock spoke with the I-Connect007 Editorial Team on the complexities of moving toward ultra HDI manufacturing. As we learn in this conversation, the number of shifting constraints relative to traditional PCB fabrication is quite large and can sometimes conflict with each other.
Asia/Pacific AI Spending Surge to Reach a Projected $78 Billion by 2027
09/19/2023 | IDCAsia/Pacific spending on Artificial Intelligence (AI) ), including software, services, and hardware for AI-centric systems will grow to $78.4 billion in 2027, according to International Data Corporation's latest Worldwide Artificial Intelligence Spending Guide.
Intel to Sell Minority Stake in IMS Nanofabrication Business to TSMC
09/13/2023 | IntelIntel Corporation announced that it has agreed to sell an approximately 10% stake in the IMS Nanofabrication business to TSMC. TSMC’s investment values IMS at approximately $4.3 billion, consistent with the valuation of the recent stake sale to Bain Capital Special Situations.