-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueInner Layer Precision & Yields
In this issue, we examine the critical nature of building precisions into your inner layers and assessing their pass/fail status as early as possible. Whether it’s using automation to cut down on handling issues, identifying defects earlier, or replacing an old line...
Engineering Economics
The real cost to manufacture a PCB encompasses everything that goes into making the product: the materials and other value-added supplies, machine and personnel costs, and most importantly, your quality. A hard look at real costs seems wholly appropriate.
Alternate Metallization Processes
Traditional electroless copper and electroless copper immersion gold have been primary PCB plating methods for decades. But alternative plating metals and processes have been introduced over the past few years as miniaturization and advanced packaging continue to develop.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - pcb007 Magazine
Rogers’ John Coonrod on Insertion Loss
June 20, 2016 | Barry Matties, I-Connect007Estimated reading time: 7 minutes
Matties: You've talked about different manufacturing processes. How does an OEM or buyer of that technology verify this before they get into a problem situation?
Coonrod: That's a good question, actually. Because normally an OEM designs a board and sends it off for the fabricator to build it, and they put on there what they are interested in, of course, for conductor widths, what kind of finish they want and things like that. That gives the PCB fabricator a lot of room to do a lot of different things. Normally, the OEMs don't specify some of the things that I'm going to be talking about today, and in some ways I hope what I'm going to talk about will be enlightening for the OEMs, but also for the PCB fabricators too—that they need to be more aware of how they build the boards sometimes for the OEMs. I'm not sure if that really answers your question or not though... (laughs)
Matties: Well, it sounds like there's no real answer.
Coonrod: No, not really.
Matties: Other than that they can be aware of the problem. If the OEM is aware of the nature of the problem is there a specification where they can come in and say, "We want it manufactured like this"?
Coonrod: There are some cases, as you will see when I go through my presentation, where they can put a spec on things and say, "Okay, it has to be within this window," and then that takes care of the problem. In other cases it is the nature of the beast, and either the OEM has to realize that their design is going to have this wider range than they expected or they have to re-design and do something different.
Matties: Is this a prevalent problem in the industry?
Coonrod: It's a pretty big deal, I think. Really what happens is a lot of the fabricators that have been in the industry a long time have learned these lessons along the way, so they are already doing a lot of this automatically and you just don’t run into this problem with some of the really experienced people. Then, in some cases, the OEMs are doing things that they haven't tried to do before because they are pushing the limits of technology and they're trying do different things with materials and processes that haven't be done before. So every now and then when you get the right combination, unexpected things can happen.
Matties: What does a designer need to be aware of in this process?
Coonrod: What I'm going to show today is about four major topics in the PCB fabrication process that can affect the performance of the RF board. One of them is copper plating thickness, because it's very common, obviously, to plate copper through the circuit. But copper plating thickness variation, how much it varies from one circuit to another, has a pretty big role on one type of design but not as much on another type of design. So I kind of split that up today, showing that copper plating thickness is more important with some designs than in other designs.
Then there is the plated finish, which is used a lot, where they put electroless nickel immersion gold (ENIG) on copper in order to have a good reliable board for a long period of time. ENIG is a good process, but there are some things that it does that causes more insertion loss. But with certain designs it causes more insertion loss than in other designs, so that's another thing where there are certain designs that can use ENIG and not have as much loss as others. The other two topics are copper surface roughness, which is a really big topic and I’m just going to scratch the surface today, and then the last one is solder mask, and that is another topic that comes up from time to time.
Matties: It sounds like once you find the right recipe, stick with it.
Coonrod: Yes, that is true. I think that's how lots of engineers are. Once you've got something that works, don't mess with it.
Matties: But isn't that a trap?
Coonrod: It can be, yes. Especially if you are trying to deal with new technologies. A lot of times when you're breaking out a new technology you have to do something different and you have no choice but to go out on a limb. And that's kind of what some of this presentation is. I'm really sharing my learning experiences of different things I've heard and seen in the industry or helped troubleshoot, and just trying to make sure everyone is aware of these potential hazards.
Matties: John, thanks for spending time with us. I look forward to your presentation.
Coonrod: Great, thank you.
Page 2 of 2Suggested Items
Overview of Soldering Systems With Vacuum
12/18/2024 | Dr. Paul Wild, Rehm Thermal Systems GmbHWhen soldering electronic assemblies, the focus of the vacuum application is on the removal of volatile substances from the solder joints and the associated reduction of pore formation. Particularly in the thermal management of power electronics components, pores can cause so-called hotspots with higher temperatures due to their poor heat conduction. These hotspots can lead to overheating of the components on the one hand and to thermally induced destruction of the solder structure on the other.
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
12/13/2024 | Andy Shaughnessy, I-Connect007This week, Peter Tranitz discusses the upcoming Pan-European Electronics Design Conference, set for Jan. 29-30 in Vienna, Austria. Pete Starkey brings us a review of the most recent EIPC Technical Snapshot webinar, which featured a global PCB maker update by Dr. Hayao Nakahara. Don't miss our interview with Manfred Huschka, who explains how companies can begin their own China Plus One plan. Stan Farnsworth breaks down photonic soldering and discusses its use in soldering materials that are not typically compatible. I also enjoyed Dan Beaulieu’s discussion on the value of consistency, and why just showing up for work is half the battle, especially in an inconsistent, evolving industry like ours.
Advancing Photonic Soldering
12/11/2024 | Nolan Johnson, SMT007 MagazineStan Farnsworth, director of customer satisfaction at PulseForge, discusses the advancements in photonic soldering that highlight its energy efficiency and versatility. Over the past two years, the company has refined its applications for flexible substrates and energy reduction, finding that photonic soldering allows the processing of materials that typically aren’t thermally compatible and offers significant energy savings compared to traditional methods.
Indium Introduces New ROL0 and Halogen-free Flux-cored Wire
12/11/2024 | Indium CorporationIndium Corporation announced the global availability of CW-807RS, a new high-reliability, halide- and halogen-free flux-cored wire that improves wetting speeds and cycle times for electronics assembly and robot soldering applications.
SolderKing Celebrates a Year of Expansion, Innovation, and Sustainability Achievements
12/09/2024 | SolderKing Assembly Materials Ltd,SolderKing Assembly Materials Ltd, a leading UK-based manufacturer of soldering materials and consumables, has wrapped up 2024 with a series of milestones that reflect its ongoing growth and commitment to innovation.