-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueSpotlight on India
We invite you on a virtual tour of India’s thriving ecosystem, guided by the Global Electronics Association’s India office staff, who share their insights into the region’s growth and opportunities.
Supply Chain Strategies
A successful brand is built on strong customer relationships—anchored by a well-orchestrated supply chain at its core. This month, we look at how managing your supply chain directly influences customer perception.
What's Your Sweet Spot?
Are you in a niche that’s growing or shrinking? Is it time to reassess and refocus? We spotlight companies thriving by redefining or reinforcing their niche. What are their insights?
- Articles
- Columns
- Links
- Media kit
||| MENU - smt007 Magazine
Happy’s Essential Skills: Computer-Aided-Manufacturing, Part 1—Automation Protocols
September 14, 2016 | Happy HoldenEstimated reading time: 19 minutes
In 1987, IEEE introduced Standard Codes, Formats, Protocols, and Common Commands, IEEE-488.2[3]. It was revised in 1992. IEEE-488.2 provided for basic protocols and format exchange, as well as device-independent commands, data structures, and error protocols. IEEE-488.2 was built on IEEE-488.1 but without replacing it. Equipment can conform to the simpler IEEE-488.1 without following IEEE-488.2.
As explained in the Wikipedia definition of IEEE-488[4]: “While IEEE-488.1 defined the hardware and IEEE-488.2 defined the protocol, there was still no standard for instrument-specific commands. Commands to control the same class of instrument (e.g., multimeters), would vary between manufacturers and even models…The United States Air Force, and later Hewlett-Packard, recognized this problem. In 1989, HP developed their TML language which was the forerunner to Standard Commands for Programmable Instrumentation (SCPI). SCPI was introduced as an industry standard in 1990. SCPI added standard generic commands, and a series of instrument classes with corresponding class-specific commands. SCPI mandated the IEEE-488.2 syntax, but allowed other (non-IEEE-488.1) physical transports.”
As explained in the IEEE Standards website[3]: “In 2004, the IEEE and IEC combined their respective standards into a "Dual Logo" IEEE/IEC standard IEC-60488-1, Standard for Higher Performance Protocol for the Standard Digital Interface for Programmable Instrumentation - Part 1: General, replaces IEEE-488.1/IEC-60625-1, and IEC-60488-2,Part 2: Codes, Formats, Protocols and Common Commands, replaces IEEE-488.2/IEC-60625-2.”
MAPS™ protocol—Message Automation & Protocol Simulation (MAPS™)[5]
As explained in GL Communications Inc. overview tutorial:
MAPS specifies a set of standard communication services for factory automation, and has been accepted as an international standard by the ISO. It is a protocol simulation and conformance test tool that supports a variety of protocols for such factory floor controllers as PLC, robots, group controllers and cluster controllers. MAPS is one of the oldest and most used of the factory floor automation protocols, being pioneered by General Motors and adopted by General Electric for its factories. MAPS is based on the Reference Model for Open Systems Interconnection (OSI) of the International Organization for Standardization (ISO). It has three main components: the File Transfer, Access, and Management services, the Manufacturing Message Specification services, and the X.500 services. The protocol such as SIP, MEGACO, MGCP, SS7, ISDN, GSM, MAP, CAS, LTE, UMTS, SS7 SIGTRAN, ISDN SIGTRAN, SIP I, GSM AoIP, Diameter and others. This message automation tool covers solutions for both protocol simulation and protocol analysis. The application includes various test plans and test cases to support the testing of real-time entities. Along with automation capability, the application gives users the unlimited ability to edit messages and control scenarios (message sequences). "Message sequences" are generated through scripts.
MAPS™ is designed to work on TDM interfaces as well as on the IP/Ethernet interfaces. MAPS™ also supports 3G & 4G mobile protocol standards for testing the rapidly evolving mobile technologies. MAPS™ can simulate radio signaling protocols such as LTE (S1, eGTP, X2) interfaces and UMTS (IuCS, IuPS, IuH), GPRG Gb, and GSM A over IP transport layer.
MAPS™ test suite is enhanced to simulate multiple UEs and IMS core elements such as P-CSCF, I-CSCF, S-CSCF, PCRF, MGCF in IMS core network. With the help of mobile phones, and other simulated wireless networks, the VoLTE Lab setup can be operated in real-time for making VoLTE calls and also for interworking with PSTN and VoIP networks. MAPS™ is enhanced to a high density version and a special purpose 1U network appliance that is capable of high call intensity (hundreds of calls/sec) and high volume of sustained calls (tens of thousands of simultaneous calls/1U platform).
A very good description of MAPS and how it works is available in the HP Journal articles of August, 1990.
SECS I & SECII/GEM Protocols[6]
This is the Semiconductor Equipment & Materials International (SEMI) Open Standard. The semiconductor process equipment manufacturers have identified the need for their equipment to communicate with a larger host computer system and developed SEMI Equipment Communications Standard (SECS), which defines parts of all seven ISO open system interconnect (OSI) communications layers.
SECS/GEM standardizes two-way communication within a network or serial cable that connect equipment and is independent of any particular programming or computer operating system.
As explained in the HP Journal article[6]:
SECS I incorporates the use of RS-232-C cabling and pin definitions and a relatively simple line protocol. SECS II defines messages to request and send status information, transfer recipe data, report alarm conditions, send remote equipment control commands, and handle material transfer. SECS I uses a simple ENQ-ACK handshake across an RS-232-C line with checksums at the end of each message. SECS I also defines time-out intervals between handshake responses, individual message characters, and message responses. Message headers are defined in SECS I to include equipment identifiers, message identifiers, message block numbers, and other system information.
SECS II defines message types, format, content, and directions. SECS streams are groups of messages assigned to a general set of equipment functionality. Within each stream, the individual messages are assigned function numbers. For example, SECS stream 1 function 5 (abbreviated S1 F5) is a formatted equipment status request, and stream 1 function 6 is the reply with the status information. Similarly, stream 7 function 5 is used to request the transfer of a process recipe and stream 7 function 6 is used to transfer the recipe. SECS II also defines whether a reply is required or not, the message content and format (including data item definition headers), and whether a message may be used from equipment-to-host and/or host-to-equipment.
A major limitation of the SECS standard is that it defines messages and their content only; it does not define how the messages are used together to perform a function. Equipment manufacturers are left to decide what messages to use to perform functions that were performed manually before. This, of course, makes it difficult to develop translators for external systems to communicate with such equipment.
Figure 6: SEMI’s SECSII/GEM communication standard documents machine connectivity and control / recipes. (Source: HP Journal, July 1985)
Figure 6 show more details of the SECS II/GEM standard built on the OSI 7-level communication model (Figure 7). There is a good free SECS/GEM document available from SEMETECH[7].
Page 3 of 5
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
09/12/2025 | Marcy LaRont, I-Connect007We may be post-Labor Day, but it is still hot-hot-hot here in the great state of Arizona—much like our news cycles, which have continued to snap, crackle, and pop with eye-raising headlines over this past week. In broader global tech news this week, AI and tariff-type restrictions continues to dominate with NVIDIA raising its voice against U.S. lawmakers pushing chip restrictions, ASML investing in a Dutch AI start-up company to the tune of $1.5 billion, and the UAE joining the ranks of the U.S. and China in embracing “open source” with their technology in hopes of accelerating their AI position.
IPS, SEL Raise the Bar for ENIG Automation in North America
09/11/2025 | Mike Brask, IPSIPS has installed a state-of-the-art automated ENIG plating line at Schweitzer Engineering Laboratories’ PCB facility in Moscow, Idaho. The 81-foot, fully enclosed line sets a new standard for automation, safety, and efficiency in North American PCB manufacturing and represents one of the largest fully enclosed final finish lines in operation.
Dan Feinberg on Walt Custer: Remembering an Extraordinary Business Associate and Friend
09/09/2025 | Dan Feinberg, Technology Editor, I-Connect007The passing of Walt Custer marks the end of an era for all those who knew him and were helped and impressed by his presence, both personally and professionally. Walt's life was characterized by his unwavering commitment to the industry, his profound wisdom and willingness to share it, and his infectious enthusiasm for everything he did.
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
09/05/2025 | Andy Shaughnessy, I-Connect007It’s almost fall here in Atlanta, and that means that the temperature is finally dropping. And it quit raining! It’s been raining since March, and I’m so over it, as the social influencers say. Last night we grilled out on the deck, and it wasn’t hot, and we didn’t get rained on. Life is good. It was a busy week in the industry. In this installment of my must-reads, we say goodbye to Walt Custer, the man who made PCB data points interesting for the rest of us.
UHDI Fundamentals: UHDI Technology and Industry 4.0
09/03/2025 | Anaya Vardya, American Standard CircuitsUltra high density interconnect (UHDI) technology is rapidly transforming how smart systems are designed and deployed in the context of Industry 4.0. With its capacity to support highly miniaturized, high-performance, and densely packed electronics, UHDI is a critical enabler of the smart, connected, and automated industrial future. Here, I’ll explore the synergy between UHDI and Industry 4.0 technologies, highlighting applications, benefits, and future directions.