T-rays will 'Speed Up' Computer Memory by a Factor of 1,000
October 13, 2016 | Moscow Institute of Physics and TechnologyEstimated reading time: 3 minutes

Together with their colleagues from Germany and the Netherlands, scientists at the Moscow Institute of Physics and Technology (MIPT) have found a way to significantly improve computer performance. In their paper published in Nature Photonics ("Nonlinear spin control by terahertz-driven anisotropy fields"), they propose the use of the so-called T-waves, or terahertz radiation as a means of resetting computer memory cells. This process is several thousand times faster than the magnetic-field-induced switching.
The figure shows thulium orthoferrite (TmFeO2) spin and lattice structure on the left and the T-ray-induced transitions between the energy levels of thulium ions (Tm3+), which trigger coherent spin dynamics (memory switching), on the right.
“We have demonstrated an entirely new way of controlling magnetization, which relies on short electromagnetic pulses at terahertz frequencies. This is an important step towards terahertz electronics. As far as we know, our study is the first to make use of this mechanism to trigger the oscillations of magnetic subsystems,” says Anatoly Zvezdin of Prokhorov General Physics Institute and MIPT, a coauthor of the paper and a USSR State Prize-winning scientist heading MIPT’s Laboratory of physics of magnetic heterostructures and spintronics for energy-saving information technologies.
The rapidly increasing amounts of digital data that have to be manipulated, along with the growing complexity of the computation tasks at hand, compel hardware designers to achieve ever higher computational speeds. Many experts believe that classical computation is currently approaching a limit, beyond which no further increase in data processing speed would be practicable. This motivates scientists all over the world to investigate possibilities of entirely different computer technologies. One of the weak spots in modern computers retarding their evolution is memory: it takes time to complete every set/reset operation for a magnetic memory cell, and reducing the duration of this cycle is a very challenging task.
A group of scientists that includes Sebastian Baierl of the University of Regensburg, Anatoly Zvezdin, and Alexey Kimel of Radboud University Nijmegen (the Netherlands) and Moscow Technological University (MIREA) proposed that electromagnetic pulses at terahertz frequencies (with wavelengths of about 0.1 millimeter, i.e., between those of microwaves and infrared light) could be used in memory switching instead of external magnetic fields. A more familiar device that makes use of the terahertz radiation is the airport body scanner. T-rays can expose weapons or explosives concealed under a person’s clothing, without causing any harm to live tissues.
To find out, whether T-rays could be used for convenient memory states switching (storing “magnetic bits” of information), the researchers performed an experiment with thulium orthoferrite (TmFeO2). As a weak ferromagnet, it generates a magnetic field by virtue of the ordered alignment of the magnetic moments, or spins of atoms in the microcrystals (magnetic domains). In order to induce a reorientation of spins, an external magnetic field is necessary.
However, the experiment has shown that it is also possible to control magnetization directly by using terahertz radiation, which excites electronic transitions in thulium ions and alters the magnetic properties of both iron and thulium ions. Furthermore, the effect of T-rays proved to be almost ten times greater than that of the external magnetic field. In other words, the researchers have devised a fast and highly efficient remagnetization technique—a solid foundation for developing ultrafast memory.
The scientists expect their “T-ray switching” to work with other materials as well. Thulium orthoferrite, which was used in the experiment, happens to be convenient for the purposes of demonstration, but the proposed magnetization control scheme itself is applicable to many other magnetic materials.
“There was a Soviet research group that used orthoferrites in their studies, so this was always kind of a priority field for us. Our research can be seen as a follow-up on their studies,” points out Anatoly Zvezdin.
Suggested Items
American Made Advocacy: New Congress, New Opportunities
02/04/2025 | Shane Whiteside -- Column: American Made AdvocacyLast month, I spent two days in Washington, D.C., discussing the need for policies that level the playing field for our technology providers and the tens of thousands of workers they employ. As you might expect, the 2024 elections have reordered Washington, but doors remain open for the manufacturing community, and I am optimistic that actions to reshore and rebuild are possible.
Effects of Advanced Packaging and Stackup Design
12/26/2024 | I-Connect007 Editorial TeamKris Moyer teaches several PCB design classes for IPC and Sacramento State, including advanced PCB design. His advanced design classes take on some really interesting topics, including the impact of a designer’s choice of advanced packaging upon the design of the layer stackup. Kris shares his thoughts on the relationship between packaging and stackup, what PCB designers need to know, and why he believes, “The rules we used to live by are no longer valid.”
VDL to Produce Crucial Components for New Medical Isotope Reactor
12/18/2024 | VDL GroepVDL Groep is working to further broaden and strengthen its hightech activities. The industrial family business with its headquarters in Brainport Eindhoven is taking its first, substantial steps into the nuclear sector, a key growth market. Operating company VDL KTI in Mol, Belgium, will produce and supply crucial components for the new PALLAS reactor in Petten.
VDL to Produce Crucial Components for New Medical Isotope Reactor
12/16/2024 | VDL GroepVDL Groep is working to further broaden and strengthen its hightech activities. The industrial family business with its headquarters in Brainport Eindhoven is taking its first, substantial steps into the nuclear sector, a key growth market.
PDR Offers Advanced Infrared Heating Technology for BGA Rework
12/02/2024 | PDRPDR Americas is proud to highlight its industry-leading solutions for BGA and SMT rework. As a trusted partner in electronics manufacturing, PDR’s rework stations deliver precision, reliability, and simplicity, setting a new standard for addressing the challenges of modern rework applications.