-
-
News
News Highlights
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueThe Legislative Outlook: Helping or Hurting?
This month, we examine the rules and laws shaping the current global business landscape and how these factors may open some doors but may also complicate business operations, making profitability more challenging.
Advancing the Advanced Materials Discussion
Moore’s Law is no more, and the advanced material solutions to grapple with this reality are surprising, stunning, and perhaps a bit daunting. Buckle up for a dive into advanced materials and a glimpse into the next chapters of electronics manufacturing.
Inventing the Future With SEL
Two years after launching its state-of-the-art PCB facility, SEL shares lessons in vision, execution, and innovation, plus insights from industry icons and technology leaders shaping the future of PCB fabrication.
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
Material Choices for High-Speed Flexible Circuits
April 27, 2017 | G. Sidney Cox, COX CONSULTINGEstimated reading time: 1 minute

Abstract
High-speed rigid boards have existed for many years, with fluoropolymers being the most common dielectric used. More recently, flexible circuit materials have been developed, and these new products use a variety of polymer (including fluoropolymers) and composite film approaches to allow high-speed flex circuits. This article will provide guidelines on how to compare the different options. The electrical benefits of the different polymers and constructions will be reviewed as well as the physical and flexible properties of different constructions. As with any new materials, the ease of processing is an important consideration, especially since some of these new products use thermoplastic adhesives or require high-temperature lamination of bondplies and coverlays.
Introduction
High-speed rigid boards have existed for many years and continue to improve. Initially, most high-speed rigid boards used fluoropolymer dielectrics (fluorine-containing polymers like Teflon®). Now many new dielectrics have been developed for high-speed rigid boards, which has broadened both the material supplier base and the number of fabricators that can make high-speed rigid boards.
Materials for high-speed flexible circuits are a much more recent development. This article will review the key material choices for making high-speed flexible circuits while also explaining why older flex materials were not a good choice for today’s high-speed circuits.
When talking about high-speed circuits, we are really talking about controlled impedance applications. This could be either microstrip or stripline designs. This paper will discuss flexible clads, as well as bondplies and coverlays. For controlled impedance circuits, the electrical properties of the clad and bondplies are critical for striplines. The electrical properties of the clad and coverlay are critical for microstrips.
To read the full version of this article which appeared in the April 2017 issue of The PCB Magazine, click here.
Testimonial
"Your magazines are a great platform for people to exchange knowledge. Thank you for the work that you do."
Simon Khesin - Schmoll MaschinenSuggested Items
ITW EAE Despatch Ovens Now Support ASTM 5423 Testing
10/15/2025 | ITW EAEAs the demand for high-performance electrical insulation materials continues to grow—driven by the rapid expansion of electric vehicles (EVs) and energy storage systems—thermal processing has become a critical step in material development.
Beyond Thermal Conductivity: Exploring Polymer-based TIM Strategies for High-power-density Electronics
10/13/2025 | Padmanabha Shakthivelu and Nico Bruijnis, MacDermid Alpha Electronics SolutionsAs power density and thermal loads continue to increase, effective thermal management becomes increasingly important. Rapid and efficient heat transfer from power semiconductor chip packages is essential for achieving optimal performance and ensuring long-term reliability of temperature-sensitive components. This is particularly crucial in power systems that support advanced applications such as green energy generation, electric vehicles, aerospace, and defense, along with high-speed computing for data centers and artificial intelligence (AI).
Is Glass Finally Coming of Age?
10/13/2025 | Nolan Johnson, I-Connect007Substrates, by definition, form the base of all electronic devices. Whether discussing silicon wafers for semiconductors, glass-and-epoxy materials in printed circuits, or the base of choice for interposers, all these materials function as substrates. While other substrates have come and gone, silicon and FR-4 have remained the de facto standards for the industry.
Creative Materials to Showcase Innovative Functional Inks for Medical Devices at COMPAMED 2025
10/09/2025 | Creative Materials, Inc.Creative Materials, a leading manufacturer of high-performance functional inks and coatings, is pleased to announce its participation in COMPAMED 2025, taking place November 17–20 in Düsseldorf, Germany.
Jiva Leading the Charge Toward Sustainable Innovation
09/30/2025 | Marcy LaRont, PCB007 MagazineEnvironmental sustainability in business—product circularity—is a high priority these days. “Circularity,” the term meant to replace “recycling,” in its simplest definition, describes a full circle life for electronic products and all their elements. The result is re-use or a near-complete reintroduction of the base materials back into the supply chain, leaving very little left for waste. For what cannot be reused productively, the ultimate hope is to have better, less harmful means of disposal and/or materials that can seamlessly and harmlessly decompose and integrate back into the natural environment. That is where Jiva and Soluboard come in.