Making Robots Sweat With Smart Surfaces That Act as Artificial Skin
August 5, 2019 | Eindhoven University of TechnologyEstimated reading time: 3 minutes

The Dutch Research Council (NWO) has awarded three million euros to seven early-stage researchers in physics and chemistry through the START-UP programme. Among them, Danqing Liu, assistant professor at the Department of Chemical Engineering and Chemistry of TU/e. Liu receives nearly 411,000 euros, which will be used to develop smart surfaces that can secrete fluids and absorb them from their environment, in response to light or to electric fields. These surfaces will be used to study friction during motion, for self-cleaning systems, and for robotic and health care applications.
Secretion is a common phenomenon in nature. Human skin secretes oil to defend our bodies against bacteria and sweat to regulate our body temperature. Fishes secrete slimy mucus from their skin to protect against parasites and to reduce friction with water to swim faster. Inspired by the skins of living creatures, Danqing Liu develops smart surfaces that can repeatedly release and reabsorb substances under environmental stimuli, such as light and electricity.
Controlled release of liquid from surface area is important for self-cleaning systems, where the released lubricant modifies surface wettability and repels the attachment of various contaminants. Also, it can be used for biomedical purposes, such as skin patches, to control humidity and slowly release antibiotics to cure wounds. And, in a not too far future, smart surfaces could even be used as ‘artificial skins’ of robots.
Walking, exercising, raising objects or simply standing still. Every time we use our muscles, they produce heat as a by-product. The more we use them, the more they have to be actively cooled down. This is why we sweat. By sweating, water is pumped out of our bodies, and as that water evaporates, it cools us down.
In robots, especially in humanoid robots placing high torque demands on their motors, the generated heat represents a major constraint on their performance. Currently, engineers solve this problem by using fans or bulky radiators, which take up space and add mass. In the future, the smart surfaces developed by Liu might be used to develop artificial skins which could ‘make robots sweats, cool down and perform better’.
Responsive Materials
With a broad background in various disciplines, ranging from electrical, to mechanical and chemical engineering, Liu attempts to fill the gap between molecular sciences - such as synthetic organic chemistry - and material science. “I develop new materials like silicones, hydrogels and liquid crystal polymers, at submicrometer length scales”, she explains. These materials are ‘responsive’, meaning that they can sense external stimuli and adapt to those via built-in sensory systems. The latter are either intrinsically present in the materials itself or they can be integrated in the form of optical, electrical or chemical sensors.
Career Steps and Previous Awards
Danqing Liu joined the Department of Mechanical Engineering of TU/e for her PhD research in 2009. In 2013, after receiving her PhD, she joined the Department of Chemical Engineering and Chemistry as a postdoctoral researcher. In 2015 she was appointed Research Fellow at the Institute of Complex Molecular Systems. Since 2019, she is Assistant professor in the group of Stimuli-responsive Functional Materials and Devices led by prof. Albert Schenning, at the Department of Chemical Engineering and Chemistry. Beside the START-UP grant, Liu was awarded a Dutch national 4TU grant (2015), and a VENI grant (2016) from NWO.
End of START-UP Programme
The NWO START-UP programme aims at providing a boost to new principal investigators, by giving them the opportunity to refine their creative and high-risk ideas and to establish a basis for future research themes and innovations. With the award of this funding round, the START-UP programme has come to an end. Following a recent letter to parliament (Dutch only) by the Minister of Education, Culture and Science, the sector plan funds allocated through NWO (including the funds for START-UP) will be transferred to direct government funding. This means that after 2020 the Dutch Research Council will no longer have access to this funding and will, therefore, terminate it.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Curing and Verification in PCB Shadow Areas
09/17/2025 | Doug Katze, DymaxDesign engineers know a simple truth that often complicates electronics manufacturing: Light doesn’t go around corners. In densely populated PCBs, adhesives and coatings often fail to fully cure in shadowed regions created by tall ICs, connectors, relays, and tight housings.
Marcy’s Musings: Advancing the Advanced Materials Discussion
09/17/2025 | Marcy LaRont -- Column: Marcy's MusingsAs the industry’s most trusted global source of original content about the electronics supply chain, we continually ask you about your concerns, what you care about, and what you most want to learn about. Your responses are insightful and valuable. Thank you for caring enough to provide useful feedback and engage in dialogue.
September 2025 PCB007 Magazine: The Future of Advanced Materials
09/16/2025 | I-Connect007 Editorial TeamMoore’s Law is no more, and the advanced material solutions being developed to grapple with this reality are surprising, stunning, and perhaps a bit daunting. Buckle up for a dive into advanced materials and a glimpse into the next chapters of electronics manufacturing.
I-Connect007 Launches Advanced Electronics Packaging Digest
09/15/2025 | I-Connect007I-Connect007 is pleased to announce the launch of Advanced Electronics Packaging Digest (AEPD), a new monthly digital newsletter dedicated to one of the most critical and rapidly evolving areas of electronics manufacturing: advanced packaging at the interconnect level.
Panasonic Industry will Double the Production Capacity of MEGTRON Multi-layer Circuit Board Materials Over the Next Five Years
09/15/2025 | Panasonic Industry Co., Ltd.Panasonic Industry Co., Ltd., a Panasonic Group company, announced plans for a major expansion of its global production capacity for MEGTRON multi-layer circuit board materials today. The company plans to double its production over the next five years to meet growing demand in the AI server and ICT infrastructure markets.