-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current Issue
The Legislative Outlook: Helping or Hurting?
This month, we examine the rules and laws shaping the current global business landscape and how these factors may open some doors but may also complicate business operations, making profitability more challenging.
Advancing the Advanced Materials Discussion
Moore’s Law is no more, and the advanced material solutions to grapple with this reality are surprising, stunning, and perhaps a bit daunting. Buckle up for a dive into advanced materials and a glimpse into the next chapters of electronics manufacturing.
Inventing the Future With SEL
Two years after launching its state-of-the-art PCB facility, SEL shares lessons in vision, execution, and innovation, plus insights from industry icons and technology leaders shaping the future of PCB fabrication.
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
Pollution Prevention Techniques: Rinse Water Reduction
August 30, 2019 | Peter Moleux with contributions from Happy HoldenEstimated reading time: 3 minutes
The first step in any pollution prevention strategy is to minimize chemical wastes and their rinse waters. There are five general categories of common techniques for pollution prevention in a PCB fabrication facility: (1) new processes to replace sources of pollution; (2) extend the bath’s life; (3) rinse water reduction; (4) dragout reduction; and (5) ventilation reduction.
While this list is not all-inclusive, it provides an overview of the types of technologies used around the world that are important to consider. In this article, we will examine rinse water reduction.
Rinse Water Reduction
Most of the waste generated in the manufacturing of PCBs is from cleaning, plating, stripping, and etching. This section describes some of the techniques available for reducing the volume of rinse water used.
While we stress the need to reduce individual rinse water flow rates when a conventional wastewater precipitation system is anticipated, there may be at least one possible exception. If in excess of 95% of all chemicals are recovered, the chemicals do not enter the rinse water collection system, and a central membrane filtration or deionization system is used to produce a zero-effluent system; then, the need to reduce rinse water flow is reduced. However, one must also consider the capital and operating costs for the central system.
One author wrote the following concerning rinse flow rates in the case of a zero-effluent system [1].
“It should also be noted that in a well-engineered zero liquid discharge environment, water conservation is unnecessary. Instead, the focus is total dissolved solids (TDS) budgeting throughout the plant, along with an analysis of specific critical contaminants. Water supply is only limited by the size of the pumps. For instance, to maximize absorption in the fume scrubber, 10 gallons/minute of DI water can be fed continuously into and out of the scrubber system reservoir… With a closed-loop system, there is no sacrificing of rinse quality to save water. Lift stations integrated with conductivity sensors can automatically identify an out-of-control waste stream as it happens, allowing for quick corrections by maintenance. Also, fresh rinse-water conductivity is always DI quality.”
Particulate Filtration on Deburr and Panel-scrubbing Operations
Deburrers are used to remove stubs of copper formed after the drilling of holes in double-sided and multilayer panels before they enter the copper deposition process. Scrubbers are used to remove oxides from printed circuit laminates, clean the surface prior to a surface coating to provide better adhesion and remove residuals after etching or stripping. In deburring and board scrubbing, particulate materials are added to the water and are removed by various methods based on size and the weight of the copper particle such that the wash water becomes suitable for up to 100% recycling. The types of filtration available for this operation are cloth, sand, centrifugation, and gravity settling with filtration.
Etcher and Conveyorized Equipment Design Modifications
Etching machines can be the single largest source of copper waste in the discharge from a PCB facility. The amount of copper discharged, and the rinse flow rate from that machine, is a function of the machine design.
An older etching machine will contain a single-stage etchant replenishing module positioned between the etching chamber and its continuously flowing single or multiple stage water rinse chamber. Fresh etchant is fed to the replenishing module to wash the panels, and that etchant (now containing copper washed from the freshly etched panels) then flows (in a direction opposite to the direction of the panel movement) into the etching chamber. The continuous water rinse can contain from 100 to 500 milligrams per liter (mg/l or ppm) of copper, depending on the configuration of the rinse module. Companies that use this type of equipment, with a single-station rinse module, normally have floor space restrictions in their production area. The etcher design affects the rate of etchant solution dragout as does the volume of panels being processed and the quality of the etchant solution control.
By way of comparison, adding a second stage replenisher station will reduce the range of copper dragout in the following rinse from 50 mg/l to 300 mg/l. We have observed more than one etching machine–using a four-stage replenisher module and a combination of water recirculating with a single-stage rinse module–produce a rinse effluent containing from less than 1.0 mg/l up to 2.0 mg/l of copper. That is the option that we recommend to clients when etchant recycle, and copper recovery are not practical or economical.
To read the full article, which appeared in the August 2019 issue of PCB007 Magazine, click here.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
WestDev Announces Advanced Thermal Analysis Integration for Pulsonix PCB Design Suite
10/29/2025 | WestDev Ltd.Pulsonix, the industry-leading PCB design software from WestDev Ltd., announced a major enhancement to its design ecosystem: a direct interface between Pulsonix and ADAM Research's TRM (Thermal Risk Management) analysis software.
Designers Notebook: Power and Ground Distribution Basics
10/29/2025 | Vern Solberg -- Column: Designer's NotebookThe principal objectives to be established during the planning stage are to define the interrelationship between all component elements and confirm that there is sufficient surface area for placement, the space needed to ensure efficient circuit interconnect, and to accommodate adequate power and ground distribution.
Episode 6 of Ultra HDI Podcast Series Explores Copper-filled Microvias in Advanced PCB Design and Fabrication
10/15/2025 | I-Connect007I-Connect007 has released Episode 6 of its acclaimed On the Line with... American Standard Circuits: Ultra High Density Interconnect (UHDI) podcast series. In this episode, “Copper Filling of Vias,” host Nolan Johnson once again welcomes John Johnson, Director of Quality and Advanced Technology at American Standard Circuits, for a deep dive into the pros and cons of copper plating microvias—from both the fabricator’s and designer’s perspectives.
Nolan’s Notes: Tariffs, Technologies, and Optimization
10/01/2025 | Nolan Johnson -- Column: Nolan's NotesLast month, SMT007 Magazine spotlighted India, and boy, did we pick a good time to do so. Tariff and trade news involving India was breaking like a storm surge. The U.S. tariffs shifted India from one of the most favorable trade agreements to the least favorable. Electronics continue to be exempt for the time being, but lest you think that we’re free and clear because we manufacture electronics, steel and aluminum are specifically called out at the 50% tariff levels.
MacDermid Alpha & Graphic PLC Lead UK’s First Horizontal Electroless Copper Installation
09/30/2025 | MacDermid Alpha & Graphic PLCMacDermid Alpha Electronics Solutions, a leading supplier of integrated materials and chemistries to the electronics industry, is proud to support Graphic PLC, a Somacis company, with the installation of the first horizontal electroless copper metallization process in the UK.