-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueThe Hole Truth: Via Integrity in an HDI World
From the drilled hole to registration across multiple sequential lamination cycles, to the quality of your copper plating, via reliability in an HDI world is becoming an ever-greater challenge. This month we look at “The Hole Truth,” from creating the “perfect” via to how you can assure via quality and reliability, the first time, every time.
In Pursuit of Perfection: Defect Reduction
For bare PCB board fabrication, defect reduction is a critical aspect of a company's bottom line profitability. In this issue, we examine how imaging, etching, and plating processes can provide information and insight into reducing defects and increasing yields.
Voices of the Industry
We take the pulse of the PCB industry by sharing insights from leading fabricators and suppliers in this month's issue. We've gathered their thoughts on the new U.S. administration, spending, the war in Ukraine, and their most pressing needs. It’s an eye-opening and enlightening look behind the curtain.
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
Improved Thermal Interface Materials For Cooling High-Power Electronics
March 31, 2022 | Jeff Brandman, Aismalibar North AmericaEstimated reading time: 2 minutes

Heat has been a significant concern in electronics since the beginning of the electronics age when hot glowing vacuum tubes were first used to receive and transmit data bits. The transistor and integrated circuit effectively solved that basic problem, but increases in integration resulted in increased concentration of heat, exacerbated by relentless increases in operating frequency. While improvements in electronics technology have been able to mitigate many thermal issues at chip level thanks to improved semiconductor designs devised to operate at lower voltages (thus requiring less energy) the thermal management challenge continues to vex electronic product developers. Moreover, with ever denser heterogeneous integration solutions now being introduced, this is expected to remain a concern to be addressed for the foreseeable future. Thermal engineers have long known that thermal energy must ultimately be “returned to the air” but getting it there in an efficient way is of great importance. They know also that there are but three basic ways of removing heat from a system: conduction, convection, and radiation; of these, conduction is by far the most efficient.
In the manufacture of printed circuits, especially those used in high power applications, the board itself becomes an obvious potential means of helping to remove heat. However, the choice must be made carefully to assure that it fits well into the scheme of traditional manufacturing, as the materials required must not only remove heat but must also maintain the high electrical insulation properties that are vitally important to printed circuit designers and the products they develop. This has been a primary focus of Aismalibar for some time and the company has accordingly developed a family of new thermal interface material (TIM) technologies designed specifically for printed circuits. The unique materials the company has developed have thermal conductivities up to 3.2 W/mK (tested according to ASTM D5470) and high electrical insulation properties of up to 6 KV AC. (For comparison, nominal laminate materials have thermal conductivities of 0.25 W/mK.)
Concept Model for Thermal Management Chain in Power Electronics
Thermal interface materials are used by design in power electronics modules to facilitate the transfer and dissipation of the heat generated by the active and passive power components on the printed circuit board by enabling efficient transfer of heat though a cooling chain to a downstream cooling element, such as a heat spreader or heat pipe and cooling fan. The ultimate objective is to ensure that the maximum component temperature specified by the manufacturer is not reached.
In addition to providing high thermal conductivity, the TIM must also provide adequate electrical insulation properties; this is especially and increasingly important in high-voltage environments such as those experienced in modern electric vehicles. The better balanced the compromise between thermal conductivity and electrical insulation capability of the TIM, the higher the performance and reliability of the entire power electronics module over its service life.
To read this entire article, which appeared in the March 2022 issue of PCB007 Magazine, click here.
Suggested Items
Compal Announces Completion of New Automotive Electronics Facility in Poland, Signaling Strategic Growth in Europe
06/30/2025 | Compal Electronics Inc.Compal Electronics is proud to announce the completion of Phase One of its new manufacturing facility in Czeladź, Silesian Voivodeship, Poland, marking a major milestone in its strategic expansion into the European automotive electronics market.
Leadership Development Continues at Incap Slovakia
06/30/2025 | IncapIncap Slovakia has launched the first leadership development training of 2025 as part of its ongoing Team Leaders Academy programme.
Flexible Electronics Market to Reach $66.9 Billion by 2032, Growing at a CAGR of 9.2% from 2025
06/30/2025 | PRNewswireThe flexible electronics market is projected to reach $66.9 billion by 2032, up from an estimated $38.4 billion in 2025, growing at a robust CAGR of 9.2% during the forecast period.
Incap Estonia Recognized with Second Golden Label for Responsible Business
06/27/2025 | IncapIncap Electronics Estonia has been awarded a golden label by the Responsible Business Forum in Estonia for the second time. The responsible business label is a prestigious symbol in Estonia that identifies entrepreneurs and organisations that demonstrate excellence in environmental, social, and economic responsibility.
TRI Unveils New Multi-Camera AOI, TR7500 SIII Ultra
06/27/2025 | TRITest Research, Inc. (TRI), the leading test and inspection systems provider for the electronics manufacturing industry, proudly introduces the new TR7500 SIII Ultra.