-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueCreating the Ideal Data Package
Why is it so difficult to create the ideal data package? Many of these simple errors can be alleviated by paying attention to detail—and knowing what issues to look out for. So, this month, our experts weigh in on the best practices for creating the ideal design data package for your design.
Designing Through the Noise
Our experts discuss the constantly evolving world of RF design, including the many tradeoffs, material considerations, and design tips and techniques that designers and design engineers need to know to succeed in this high-frequency realm.
Learning to Speak ‘Fab’
Our expert contributors clear up many of the miscommunication problems between PCB designers and their fab and assembly stakeholders. As you will see, a little extra planning early in the design cycle can go a long way toward maintaining open lines of communication with the fab and assembly folks.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
The Physics of PCB Design
November 17, 2022 | I-Connect007 Editorial TeamEstimated reading time: 5 minutes

In this wide-ranging interview, Dr. Eric Bogatin discusses the relationship between physics and electrical theory, and why it’s critical for designers and design engineers to understand the laws of physics. As he points out, the math is important, but designers shouldn’t let the principles of physics “hide behind the math.”
Eric discusses some points of physics that designers need to understand, the physics resources available, and why it’s so important to have some understanding of Maxwell’s equations, even if you don’t have a strong math background.
Andy Shaughnessy: Eric, we’ve heard a lot lately about how designers need to focus more on physics, not just circuit theory. Since you have two physics degrees and you teach signal integrity, what do you feel are most designers missing in terms of the physics?
Eric Bogatin: First, let me understand the terms that we’re going to use. When you say physics, are you talking about EM fields and Maxwell’s equations? Let’s talk about the terms.
Happy Holden: Other than Newton, James Maxwell helped define modern physics. He didn’t discover magnetic fields, but he certainly showed the relationship. We’re constantly talking about signal integrity problems, and Moore’s Law is driving and challenging Maxwell’s laws. They’re both important.
Bogatin: Moore’s Law is what drives the ever-finer feature sizes and transistors, the channels. That means shorter rise times and more signal integrity problems, but when it comes to the SI problems and the impact the interconnects have on the signals, there are two ways of thinking about them: the circuit theory approach and the fields approach, which is really a transmission line analysis that’s inherently distributed where the electromagnetic fields are important.
Barry Matties: When someone says, “PCB design is really just about physics,” is there more to that statement than what you just described?
Bogatin: When they say it’s all physics, it’s the electromagnetic fields described by Maxwell’s equations and electromagnetic fields. They’re all synonymous in this context. It’s correct that the way signals interact with interconnects is all electromagnetic fields and the boundary conditions—all Maxwell’s equations. You don’t have to be a PhD student to learn how to solve Maxwell’s equations, but you must understand a little bit about electromagnetic fields, how they interact, and how they propagate.
I had Professor Walter Lewin as a freshman at MIT, and I still vividly remember his lectures. Now there is a video series from his second semester freshman physics class, and he’s got a million views. I use what I learned in his class almost daily. When I look at the videos, which are recorded 40 years after I took the class, I see he hasn’t changed at all, and the videos are timeless. I always recommend them.
Holden: For people who are interested, are Lewin’s courses suitable for those without electrical engineering degrees, but are interested in understanding the principles?
Bogatin: Yes. They’re offered to freshmen. You don’t need to be enrolled in electrical engineering classes. There’s a little bit of math, but he goes through it slow enough that if you’ve had a little bit of calculus, you’d see it instantly. If you didn’t, that’s okay. It’s only 25% equations. You still get the principles.
Holden: Maxwell is not the easiest subject. Both Nolan and I were in electrical engineering, but because of the difficulty and the flunk-out rate from fields theory, we chose coding and stayed away from the RF and the fields. I just didn’t have the mathematical prowess to handle that.
Bogatin: You’re right. If you go that next step and talk about electromagnetic fields, Maxwell’s equations are differential equations, and you must understand some of that.
What I like about Walter Lewin’s lectures is he emphasizes the principles and the behaviors and doesn’t let the math hide it. My students bring me his videos all the time. Most of the YouTube videos on understanding electromagnetics are bad analogies or they’re not even the right physics. You’re not learning something you can use to leverage other things down the line.
Just for perspective, at MIT you get mechanics and electromagnetics in your freshman year. It’s some math, but you get the heavy math in your junior and senior years. In my junior year, I took electromagnetics. We used John David Jackson’s Classical Electrodynamics and it’s incredibly heavy in the math.
Holden: Is the abundance of heavy math instruction the reason why a lot of your focus has been on the rules of thumb and simplification in your books and publications?
Bogatin: Yes. Much of my style comes from what I learned from classes at MIT. Not to say that there isn’t rigor, but my professors emphasized the understanding part first, then the math, and I picked up on that. It is remarkable how far you can go with simple models to understand things. They have the math at their core. Math is the language of engineering and science. You must have that, but you don’t need to have every conversation with math.
There’s one approach I use called strategic simplification. You want to simplify the problem enough to understand the main points, answer important questions, and get to an answer quickly, but not so simple that you have degraded it, so it doesn’t apply to real problems. How do you take complex problems, describe them in a simple way to get an answer quickly, while still having the core of the problem in the solution in the description with not so much math?
Having said all that, math is important. If you have the opportunity, get as much as you can and apply it. Do it as a student, because when you’re a professional engineer, you don’t always have that time.
To read this entire conversation, which appeared in the November issue of Design007 Magazine, click here.
Suggested Items
Dan's Biz Bookshelf: 'Getting Naked: A Business Fable'
05/01/2025 | Dan Beaulieu -- Column: Dan's Biz BookshelfIn Getting Naked: A Business Fable About Shedding the Three Fears That Sabotage Client Loyalty, Patrick Lencioni brings his unique storytelling approach to an age-old question: How can we build genuine, unbreakable loyalty with our clients? Through the experiences of the protagonist, Jack Bauer (not to be confused with Keifer Sutherland’s action hero in the TV series “24”), we dive into the psychology of client relationships and the simple yet profound truth that loyalty is rooted in vulnerability.
Cogiscan: A New Era of Leadership, Collaboration, and Innovation
04/14/2025 | Marcy LaRont, PCB007 MagazineCogiscan, the leading platform provider for factory data focused on the unique needs of PCBA and complex manufacturing ecosystems, has had a lot of news recently. New CEO Martin Drolet, and Benoît Ouellet, VP of technology and operations, discuss their vision for the company’s future through the transition following the retirement of the company’s founders—André Corriveau, Francois Monette, and Vincent Dubois. Martin and Benoît emphasize a commitment to customer-centricity, collaboration, and the integration of cutting-edge technology like AI, with an eye toward the unique demands of high reliability manufacturing ecosystems. These new leaders are poised to continue addressing unique challenges and bright future of the PCBA industry.
It’s Only Common Sense: The Danger of Overthinking
03/24/2025 | Dan Beaulieu -- Column: It's Only Common SenseWe’ve all had those moments when we find ourselves endlessly analyzing a decision, cycling through every possible outcome, and trying to anticipate every potential obstacle. It’s not just frustrating; it’s paralyzing. Overthinking is a timewaster, a progress-stopper, and a productivity killer. For many of us, it’s become a habit that keeps us from reaching our full potential.
Defense Speak Interpreted: It’s Time for a ‘Defense-Speak’ Update
03/18/2025 | Dennis Fritz -- Column: Defense Speak InterpretedI’m Denny Fritz, the author of 30 “Defense Speak Interpreted” columns from 2018 to 2022. My original concept for this monthly op-ed was to explain the unique acronym language used by the U.S. Defense Department: CMMC, DIUx, C4ISR, JEDI, etc. When I started consulting for NSWV Crane almost 20 years ago, I would find myself sitting in meetings, perplexed at what I heard. Half the conversations were using acronyms that were foreign to me.
Marcy's Musings: The Golden Touch?
03/18/2025 | Marcy LaRont -- Column: Marcy's MusingsCorrosion, adhesion, bonding—the comprehensive issue of surface finish plating is primary for PCB manufacturers and their assembly counterparts. Gold is the standard for many applications, but it is expensive and has its limits. This issue of PCB007 Magazine leads with a deep dive into the various iterations of gold plating by the engineering team at MKS Atotech.