-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueSpotlight on India
We invite you on a virtual tour of India’s thriving ecosystem, guided by the Global Electronics Association’s India office staff, who share their insights into the region’s growth and opportunities.
Supply Chain Strategies
A successful brand is built on strong customer relationships—anchored by a well-orchestrated supply chain at its core. This month, we look at how managing your supply chain directly influences customer perception.
What's Your Sweet Spot?
Are you in a niche that’s growing or shrinking? Is it time to reassess and refocus? We spotlight companies thriving by redefining or reinforcing their niche. What are their insights?
- Articles
- Columns
- Links
- Media kit
||| MENU - smt007 Magazine
Time to Ditch Heavy Metal for Soft Rock?
April 8, 2015 | Yash Sutariya and Thomas TarterEstimated reading time: 3 minutes

I've been writing on thermal management for LED applications for a few years now, seemingly on an endless quest to find the next best thing for LED PCBs. It's been kind of like Indiana Jones and his search for the Holy Grail, except I don't have cool bullwhip skills. To date, we've focused on calculating thermal management needs as well as explore other alternatives to MCPCBs to achieve thermal management, such as standard plated through holes in FR4 material. I'd say at this point the industry has reached a saturation point when it comes to knowledge on how to dissipate heat (of course you never know what’s around the corner).
I think now it's time to move on to a topic that we've overlooked when it comes to PCBs for LEDs: reliability! I think the reason we've overlooked reliability is because it is traditionally associated with via life under thermal cycling conditions. Since most LED PCBs are single sided, this really hasn't been an issue. However, if you look above the waterline, there is another weak link—the solder joint. Some OEMs in the industry have been performing studies on the life of their LED products. While the bulbs themselves are said to have useful lives in excess of 30+ years, they are finding out that the actual LED assemblies can fail in as little as 5–6 years. Initial analysis is pointing to the significant X and Y axes CTE differences between the solder joint, copper circuitry layer, thermally conductive dielectric, and the aluminum. The net result of the CTE differences is a shear effect being created that can eventually disrupt the solder joint, which results in operational failure.
Depending upon how accurate this information is, it could mean the start of a whole new approach to PCBs for LED applications. Below is an abstract of a white paper written by Thomas Tarter from Package Science Services, which performed initial testing on carbon fiber and graphite based materials provided by Stablcor Technology Inc. The carbon fiber constraining cores (CFCC) materials evaluated are carbon-fiber and/or graphite reinforced epoxy cores to aid in heat dissipation, rigidity, weight reduction, and CTE control. These cores can be used independently or in conjunction with current MCPCBs to produce functionally improved heat dissipation while reducing the CTE mismatch currently present on LED assemblies.
Abstract: Introduction and Model Parameters (by Thomas Tarter)
Thermal performance for PCB structures are investigated in the form of steady-state finite element models of various stack-ups of commonly used materials for LED applications. The models show the effect of materials used in the stack up including FR-4, aluminum, copper, graphite and CFCC. The goal of the study is to compare relative thermal behavior of typical boards modified with the enhanced core materials.
The materials are inserted into standard PCB stack-up configurations as an added or replaced layer. Models are solved for maximum temperature on a 25 mm x 25 mm coupon with a 2 mm x 2 mm-square heat source. The stack up resembles substrates known as "metal-clad" where the dielectric and topside copper are laminated directly onto a metal substrate. In addition, FR4 boards are used as a worst-case comparison.
Variables used in the study include material properties and layer thickness. The primary variables are top side copper thickness/weight, dielectric thickness and base material thickness. Table 1 lists the ranges for geometry and material properties. The heat source is simulated as a planar load, directly on the surface of the top-layer copper. One watt is applied over a 2mm x 2 mm square area in the center of the coupon. The models are solved in natural convection with an ambient temperature of 30°C.
Editor's Note: This article originally appeared in the March issue of SMT Magazine.
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
Indium Corporation Earns Mexico Technology Award for New Halogen-Free Flux-Cored Wire
09/18/2025 | Indium CorporationIndium Corporation recently earned a Mexico Technology Award for its new high-reliability, halide- and halogen-free flux-cored wire, CW-807RS, which improves wetting speeds and cycle times for electronics assembly and robot soldering applications.
MacDermid Alpha Showcases Advanced Interconnect Solutions at PCIM Asia 2025
09/18/2025 | MacDermid Alpha Electronics SolutionsMacDermid Alpha Electronic Solutions, a global leader in materials for power electronics and semiconductor assembly, will showcase its latest interconnect innovations in electronic interconnect materials at PCIM Asia 2025, held from September 24 to 26 at the Shanghai New International Expo Centre, Booth N5-E30
Breakthrough in Non-Contact Solder Removal Earns Kurtz Ersa 2025 Mexico Technology Award at SMTA Guadalajara
09/18/2025 | Kurtz Ersa Inc.Kurtz Ersa Inc., a leading supplier of electronics production equipment, is proud to announce that it has been awarded a 2025 Mexico Technology Award in the category of Rework & Repair for its HR 600P Automatic Rework System.
Knocking Down the Bone Pile: Best Practices for Electronic Component Salvaging
09/17/2025 | Nash Bell -- Column: Knocking Down the Bone PileElectronic component salvaging is the practice of recovering high-value devices from PCBs taken from obsolete or superseded electronic products. These components can be reused in new assemblies, reducing dependence on newly purchased parts that may be costly or subject to long lead times.
Koh Young, Fuji, and Kurtz ERSA Drive Smart Manufacturing Solutions for EV and Automotive Electronics at Kunshan, China Technical Seminar
09/11/2025 | Koh YoungKoh Young Technology, the global leader in True 3D measurement-based inspection solutions, partnered with Fuji Corporation and Kurtz ERSA to host an exclusive technical seminar for leading automotive manufacturers in East China. Held on September 4 at Fuji’s factory in Kunshan, the event gathered participants representing over 35 companies.