-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueFinding Ultra
New demands on PCB fabrication, namely advanced packaging, ultra high density interconnect (UHDI), and new specialty materials, are converging, changing the landscape of our business. Is it time to start paying close attention to this convergence?
Developing a Strategy
A solid strategy is a critical part of success. This month, we asked some of the top industry leaders and business strategy “gurus” to share their thoughts on developing strategies.
Winning With TQM
In this issue, we explore how TQM has entered the DNA of continuous improvement disciplines, and the role leadership transformation plays in this. If you've ever competed against a TQM company, you understand their winning advantage.
- Articles
- Columns
Search Console
- Links
- Events
||| MENU - pcb007 Magazine
Happy’s Essential Skills: The Need for Total Quality Control (Six Sigma and Statistical Tools), Part 2
February 3, 2016 | Happy HoldenEstimated reading time: 8 minutes

To read part one of this series, click here.
Six Sigma
Six Sigma is a disciplined, data-driven approach and methodology for eliminating defects (driving toward six standard deviations between the mean and the nearest specification limit) in any process—from manufacturing to transactional, and from product to service.
The statistical representation of Six Sigma describes quantitatively how a process is performing. To achieve Six Sigma, a process must not produce more than 3.4 defects per million opportunities. A Six Sigma defect is defined as anything outside of customer specifications. A Six Sigma opportunity is then the total quantity of chances for a defect.
The fundamental objective of the Six Sigma methodology is the implementation of a measurement-based strategy that focuses on process improvement and variation reduction through the application of Six Sigma improvement projects. This can be accomplished through two Six Sigma sub-methodologies: Business Process Management Systems (BPMS) and Six Sigma Improvement Methodologies: DMAIC and DMADV (Figure 1).
The Six Sigma DMAIC process (define, measure, analyze, improve, control) is an improvement system for existing business processes falling below specification and looking for incremental improvement. The Six Sigma DMADV process (define, measure, analyze, design, verify) is an improvement system used to develop new processes, products, or defining customer needs at Six Sigma quality levels. It is also called Design for Six Sigma (DFSS). It can also be employed if a current process requires more than just incremental improvement. Both Six Sigma processes are executed by Six Sigma Green Belts and Six Sigma Black Belts, and are overseen by Six Sigma Master Black Belts.
According to the Six Sigma Academy, black belts save companies approximately $230,000 per project and can complete four to six projects per year. General Electric, one of the most successful companies implementing Six Sigma, has estimated benefits on the order of $10 billion during the first five years of implementation. GE first began Six Sigma in 1995 after Motorola and Allied Signal blazed the Six Sigma trail. Since then, thousands of companies around the world have discovered the far-reaching benefits of Six Sigma.
Many frameworks exist for implementing the Six Sigma methodology. Six Sigma consultants all over the world have developed proprietary methodologies for implementing Six Sigma quality, based on the similar change management philosophies and applications of tools. A partial list of 18 framework and methodologies are listed here. Eight will be detailed in this and future columns in this magazine. Additionally, I have include 37 tools and templates in this column and seven more will be detailed in the future. Definitions and examples of all are available at the Six Sigma website[1].
Frameworks and Methodologies
- Balanced Scorecard
- Benchmarking*
- Business Process Management (BPM)*
- Design for Six Sigma (DFSS)*
- DMAIC
- Harada Method
- Hoshin Kanri
- Innovation
- Kaizen
- Lean*
- Metrics*
- Plan, Do, Check, Act*
- Project Management*
- Robust Design/Taguchi Method
- Theory of Constraints
- Total Quality Management (TQM)*
- VOC/Customer Focus
- Work-out
Figure 1: Six-Sigma process improvement through the DMAIC and DMADV methods (also called an affinity diagram): define, measure, analyze, improve/design, control/verify.
Six Sigma Tools & Templates[1]
- 5 Whys
- 5S
- Affinity Diagram/KJ Analysis*
- Analysis of Variance (ANOVA)
- Analytic Hierarchy Process (AHP)
- Brainstorming*
- Calculators
- Capability Indices/Process Capability
- Cause & Effect (fishbone)
- Control Charts
- Design of Experiments (DOE)*
- FMEA*
- Graphical Analysis Charts
- Hypothesis Testing
- Kanban
- Kano Analysis
- Measurement Systems Analysis (MSA)/Gage R&R
- Normality
- Pareto
- Poka Yoke
- Process Mapping
- Project Charter
- Pugh Matrix
- QFD/House of Quality*
- RACI Diagram
- Regression*
- Risk Management
- SIPOC/COPIS
- Sampling/Data
- Simulation
- Software
- Statistical Analysis*
- Surveys
- Templates
- Value Stream Mapping
- Variation
- Wizards
Statistical Methods
The Need for Statistical Tools
The discussion of quality and customer satisfaction show how important yields are to printed circuit boards. Any loss goes to the bottom line. So what are some of the tools to help improve process yields? Process control comes to mind. Chemical processes have always been difficult to control in printed circuits. These uncontrolled factors can always creep into our processes.
All process control is a feedback loop of some sort. Nevertheless, the element that I want to focus on is the control block, or more precisely, the human decisions that make up process control.
Process Control
The first link in process control is the human link. The high-level objectives are to:
- Reduce variations
- Increase first pass yields
- Reduce repair and rework
- Improve quality and reliability
- Improve workmanship
The process control tools and methods that a person may have to work with have been listed already. Of particular importance for the engineer are the statistical tools, as seen in Figure 2. Traditionally, statistical tools have been rather cumbersome and not easy to learn. I have good news: You can now get a good statistics training from the Web, at everyone’s favorite price— free.
Even if your company has good statistical software available, like mine did with Minitab, it is only available as long as you work there. By downloading the NIST/SEMATECH e-Handbook of Statistical Methods[2] and the software Dataplot, you have an equally good tool at home that can travel with you wherever you may work. Your next job may not have any statistical tools!
Page 1 of 2
Suggested Items
Cadence Custom/Analog Design Migration Flow Accelerates Adoption of TSMC Advanced Process Technologies
09/26/2023 | Cadence Design Systems, Inc.Cadence Design Systems, Inc. announced the expansion of its node-to-node design migration flow based on the Cadence® Virtuoso® Studio, which is compatible with all TSMC advanced nodes, including the latest N3E and N2 process technologies.
Joel Scutchfield, Koh Young, to Discuss Journey to Realize AI at SMTA Ontario Conference
09/25/2023 | Koh YoungKoh Young Technology, the leader in True3D™ measurement-based inspection solutions, will discuss the increasingly significant role of data collection and analysis to enable Generative Artificial Intelligence (GenAI) functionality to improve productivity in our industry.
Trouble in Your Tank: Processes to Support IC Substrates and Advanced Packaging, Part 4
09/28/2023 | Michael Carano -- Column: Trouble in Your TankIn a previous column, the critical process of desmear and its necessity to ensure a clean copper surface connection was presented. Now, my discussion will focus on obtaining a void-free and tightly adherent copper plating deposit on these surfaces. After the desmear process, the task is to insure a continuous, conductive, and void-free deposit on the via walls and capture pad. Today, there are several processes that can be utilized to render vias conductive.
The Chemical Connection: Don’t Just Blame the Etcher
09/25/2023 | Don Ball -- Column: The Chemical ConnectionIf your HDI or UHDI production process is quality challenged, don’t assume your etcher is to blame. Many factors impact the quality of the final product, so assess broadly, and you may find that the “the devil is in the details.” Generally, the first place most people can get good product specification measurement is at the end of the etching process, It’s natural and easy to blame quality shortcomings on the etcher. By all means, look at your etcher and invest some time trying to improve its performance but don’t stop there. Other factors may be affecting the etch uniformity.
KIC Revolutionizes Electronics Manufacturing with Innovative Solutions for Soldering and Curing Processes
09/21/2023 | KICKIC, a renowned pioneer in thermal process and temperature measurement solutions for electronics manufacturing, is thrilled to announce its participation in the upcoming SMTA Guadalajara Expo & Tech Forum.