-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueEngineering Economics
The real cost to manufacture a PCB encompasses everything that goes into making the product: the materials and other value-added supplies, machine and personnel costs, and most importantly, your quality. A hard look at real costs seems wholly appropriate.
Alternate Metallization Processes
Traditional electroless copper and electroless copper immersion gold have been primary PCB plating methods for decades. But alternative plating metals and processes have been introduced over the past few years as miniaturization and advanced packaging continue to develop.
Technology Roadmaps
In this issue of PCB007 Magazine, we discuss technology roadmaps and what they mean for our businesses, providing context to the all-important question: What is my company’s technology roadmap?
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - pcb007 Magazine
A Scientific Response to Mr. Laminate Tells All
November 29, 2016 | Mark Goodwin and Bill Wang, Ventec International GroupEstimated reading time: 3 minutes
We read with interest Doug Sober’s recent Mr. Laminate Tells All column, The Certification of IPC-4101D Polyimide Base Materials: Buyer Beware.
The article raises interesting questions about the IPC 4101 classification system, primarily, how is a pure resin defined?
For thermosetting materials, the “resin system” includes at least a resin and a curing system, which can take many forms—can this be defined as pure?
“Purity” is a term generally applied to single compounds, especially in inorganic chemistry. To broadly apply this term to complex organic resin systems, which may contain multiple curing chemistries, inert and active fillers, and flame retardant components, is stretching the term beyond the breaking point.
Let us consider materials classified under IPC 4101/126 for example. The specification sheet states the following:
The primary resin system is listed as “Epoxy,” with a secondary of multifunctional epoxy or modified epoxy or non-epoxy (max. wt. 5%). However, for base materials’ manufacturers to meet the performance requirements of lead-free FR-4 and high decomposition temperature, it has been standard practice for base materials manufacturers to replace the previously common dicyandiamide curing element with a phenolic resin in /126 materials. The phenolic resin element is typically present in double-digit weight percentage proportions; these products are openly referred to as “phenolic cured epoxies.” If the argument about purity of resins were applied in the same way as in the polyimide example, then all manufacturers of /126 materials should be declared as having a secondary resin system outside of the specification requirements, and would therefore be non-compliant.
The only argument that allows base materials manufacturers to claim /126 compliance with such a high percentage of non-compliant secondary resins relates to the nature of the organic molecule. The argument is that many species may be used in the formulation, but in the final reacted state there is one molecule, which had epoxy functionality prior to curing (by definition, the presence of an epoxy functional group), and can therefore be correctly classed as an epoxy resin. To quote the article, “there is only one big molecule with the largest portion being the polyimide functionality. So it is a pure polyimide at that point. That argument does not hold any water…” We can just as easily replace the term “polyimide” with “epoxy” and we have the statement “there is only one big molecule with the largest portion being the epoxy functionality. So it is a pure epoxy at that point. That argument does not hold any water…” By inference, the author must also support the argument to disbar /126 materials that use a phenolic curing element, which is most, if not all of them.
Polyimide is, by definition, a polymer that contains imide groups. Polyimide resins form a family of chemistries, aliphatic or aromatic; they may be thermoplastic or form part of a thermosetting system and may or may not include flame retardant components. Using the same arguments above, for epoxy, the final reacted state is one molecule that contains a polymer that contained a functional group consisting of two acyl groups bound to nitrogen (an imide). It is just the same argument for /126 epoxies above; what is true for /126 must also be true for /40 /41.
To reinforce this distinction one should also not forget that in the final condition, no functional epoxy or imide groups exist at all as they will have all reacted as part of the crosslinking process. It is truly “one big molecule.”
Far from “using their own rules for substitutions” and saying “you (IPC) cannot stop us,” the laminators concerned (of which Ventec is just one) are applying a consistent and scientifically correct approach to the formulation of both polyimide and epoxy resin systems. And if a “special case” is being argued for /40/41 materials that somehow does not apply to /126 materials, then the buyer must truly beware of using the IPC 4101 slash sheet classification system at all.
Mark Goodwin is CCO, EMEA & Europe with Ventec International Group.
Bill Wang is technical director with Ventec International Group.
Suggested Items
IPC Hall of Fame Spotlight Series: Highlighting Patty Goldman
11/22/2024 | Dan Feinberg, I-Connect007In my first article of this special series, I wrote a synopsis of the IPC Raymond E. Pritchard Hall of Fame (HOF) Award, along with a commentary on its first few members, particularly Pritchard. Over the years, IPC members who have contributed significantly to IPC and our industry have been awarded this high honor and recognition. Though many early HOF members have passed away and are unknown to today’s IPC membership, their contributions still resonate. Over the coming months, I look forward to researching and reporting on IPC Hall of Fame members and their contributions. This month, I highlight Patty Goldman.
Winners of IPC Hand Soldering World Championship at electronica 2024 Announced
11/21/2024 | IPCIPC hosted its Hand Soldering World Championship in Munich, Germany, at electronica on 14-15 November 2024, welcoming 14 competitors from 13 companies and 12 countries worldwide. Skilled contestants competed to build an electronics assembly in accordance with IPC-A-610 Class 3 criteria, and were judged on the functionality of the assembly, compliance with the assembly process and overall product quality. The contestants were allowed a maximum of 60 minutes to complete the assembly.
IPC Issues Clarion Call for EU to Reclaim Leadership in Electronics Manufacturing
11/21/2024 | IPCIPC released a synopsis of its recent white paper, Securing the European Union’s Electronics Ecosystem. This condensed document presents a comprehensive overview of the current challenges in Europe’s electronics manufacturing industry and shares actionable steps to help the EU achieve a stronger, more autonomous ecosystem.
Enjoy the Journey: PCB Design Instructor Kris Moyer on His Sustainable Lifestyle
11/19/2024 | Michelle Te, IPC CommunityWhen I contacted IPC design instructor Kris Moyer to discuss his sustainable lifestyle, he responded to my text with a call. "I'm calling you from about 8,000 feet, sitting at the foot of Mammoth Lakes," he told me. “My friends and I are about to get in the pool for the afternoon." Kris can do this because he actually lives full-time in his travel-trailer at this campground. He's now a permanent camper, taking him anywhere the winds blow—and where there's strong internet service—so he can teach his PCB design classes, offer expert interviews, and live off the land.
IPC Celebrates National Apprenticeship Week with a Focus on Electronics Manufacturing Excellence
11/19/2024 | IPCIPC, a leading global electronics industry association and source for industry standards, training and advocacy, is proud to announce its participation in National Apprenticeship Week, scheduled for November 17-23, 2024.