-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueEngineering Economics
The real cost to manufacture a PCB encompasses everything that goes into making the product: the materials and other value-added supplies, machine and personnel costs, and most importantly, your quality. A hard look at real costs seems wholly appropriate.
Alternate Metallization Processes
Traditional electroless copper and electroless copper immersion gold have been primary PCB plating methods for decades. But alternative plating metals and processes have been introduced over the past few years as miniaturization and advanced packaging continue to develop.
Technology Roadmaps
In this issue of PCB007 Magazine, we discuss technology roadmaps and what they mean for our businesses, providing context to the all-important question: What is my company’s technology roadmap?
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - pcb007 Magazine
PCB Plating Still Comes Down to Physics
June 21, 2022 | I-Connect007 Editorial TeamEstimated reading time: 3 minutes
For this month’s plating issue, we spoke with I-Connect007 columnist Michael Carano, a longtime surface finish expert with years of experience at RBP Chemical and OM Group. We asked Michael to discuss the latest innovations in plating equipment and chemicals, as well as some of the drivers in this segment, and the biggest challenges and opportunities he sees in plating today.
As Michael points out, despite all of the technological advances in this industry, process engineers still need a solid understanding of Faraday’s Law and Ohm’s Law to successfully plate PCBs.
Andy Shaughnessy: This is our electroplating issue, and I’ve heard you say that you know how to plate anything. What's the latest in electroplating? What sort of innovations and challenges are you seeing in processes, equipment, etc.?
Michael Carano: If you go back 30 years, what's different in electroplating technology? Forget about electrodes for now. What's different about electroplating technology? I like to call it electrodeposition because we are attaching electrodes and we're running current through a tank. In the last 10–15 years, it hasn't changed much. But what has changed is the technology of the circuit board—smaller vias and thicker boards. Whenever you make a via smaller and you add more layers, what you do is you increase what they call the ohmic resistance through the via.
With Ohm's Law, V = IR; you apply a voltage to a plating tank. If you have a 10:1 aspect ratio board and a 20:1 aspect ratio board, which one is going to be more difficult to plate? Very simple: the 20:1, because the resistance increases significantly down through the hole. From a technology standpoint, you've got to make several adjustments, which the industry has. We’ve seen adjustments in tank design, plating rack design, process control, and the formulation of new additives that enhances throwing power and overall plating distribution.
It's always funny when someone says, "Why can't we just do this?" Well, you're violating Faraday's Law. There are only so many things you can do and you can't violate certain laws of the universe. Faraday's Law is one that you don't mess with. So you've got to manipulate the amperage, the voltage, and all the things that make a difference in getting chemistry into the hole.
That's significant. Then we went to periodic reverse pulse plating, which is basically electroplating except it uses a reverse current as well as a forward current. It makes adjustments in the wave shape using square wave vs. more turbulent type waves. That has helped tremendously to plate and improve the reliability of the thicker through-hole printed circuit boards.
Finally, one of the things that was borrowed from the semiconductor industry—we've all talked about what's new because sometimes it's not new, it's just re-cloaked in a new technology—is they learned to plate copper in narrow trenches. They call it damascene plating; they actually fill a trench with electroplated copper. Of course, the trenches are very minute compared to a blind via of a circuit board, but the circuit board industry and the suppliers, in my experiences, have been able to adapt to chemistry and, again, the agitation and other adjustments, to fill blind vias by electroplating copper in a via from what's called bottom-up filling, super fill, without necessarily overplating on the top. That has helped create HDI and ultra-HDI and allowed that technology to really blossom.
How do you fill blind vias when you're not going to put a component in them? You need to fill them with something. It's like the saying: A man digs a hole, and then he wants to fill it. Well, you must fill the hole in a blind via because you can't have air in a blind via if you're not going to put components in it.
To read this entire conversation, which appeared in the June 2022 issue of PCB007 Magazine, click here.
Suggested Items
Unlocking Advanced Circuitry Through Liquid Metal Ink
10/31/2024 | I-Connect007 Editorial TeamPCB UHDI technologist John Johnson of American Standard Circuits discusses the evolving landscape of electronics manufacturing and the critical role of innovation, specifically liquid metal ink technology, as an alternate process to traditional metallization in PCB fabrication to achieve ever finer features and tighter tolerances. The discussion highlights the benefits of reliability, efficiency, and yields as a tradeoff to any increased cost to run the process. As this technology becomes better understood and accepted, even sought out by customers and designers, John says there is a move toward mainstream incorporation.
Fresh PCB Concepts: The Critical Nature of Copper Thickness on PCBs
10/31/2024 | Team NCAB -- Column: Fresh PCB ConceptsPCBs are the backbone of modern electronics and the copper layers within these boards serve as the primary pathways for electrical signals. When designing and manufacturing PCBs, copper thickness is one of the most critical factors and significantly affects the board’s performance and durability. The IPC-6012F specification, the industry standard for the performance and qualification of rigid PCBs, sets clear guidelines on copper thickness to ensure reliability in different environments and applications.
Book Excerpt: The Printed Circuit Designer’s Guide to... DFM Essentials, Ch. 1
10/25/2024 | I-Connect007The guidelines offered in this book are based on both ASC recommendations and IPC standards with the understanding that some may require adjustment based on the material set, fabricator processes, and other design constraints. This chapter details high-frequency materials, copper foil types, metal core PCBs, and the benefits of embedded capacitance and resistor materials in multilayer PCBs.
The Cost-Benefit Analysis of Direct Metallization
10/21/2024 | Carmichael Gugliotti, MacDermid AlphaCarmichael Gugliotti of MacDermid Alpha discusses the innovative realm of direct metallization technology, its numerous applications, and significant advantages over traditional processes. Carmichael offers an in-depth look at how direct metallization, through developments such as Blackhole and Shadow, is revolutionizing PCB manufacturing by enhancing efficiency, sustainability, and cost-effectiveness. From its origins in the 1980s to its application in cutting-edge, high-density interconnects and its pivotal role in sustainability, this discussion sheds light on how direct metallization shapes the future of PCB manufacturing across various industries, including automotive, consumer electronics, and beyond.
Connect the Dots: Designing for Reality—Pattern Plating
10/16/2024 | Matt Stevenson -- Column: Connect the DotsIn the previous episode of I-Connect007’s On the Line with… podcast, we painted the picture of the outer layer imaging process. Now we are ready for pattern plating, where fabrication can get tricky. The board is now ready to receive the copper traces, pads, and other elements specified in the original CAD design. This article will lay out the pattern plating process and discuss constraints in the chemistries that must be properly managed to meet the customer's exacting manufacturing tolerances.