-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueAll About That Route
Most designers favor manual routing, but today's interactive autorouters may be changing designers' minds by allowing users more direct control. In this issue, our expert contributors discuss a variety of manual and autorouting strategies.
Creating the Ideal Data Package
Why is it so difficult to create the ideal data package? Many of these simple errors can be alleviated by paying attention to detail—and knowing what issues to look out for. So, this month, our experts weigh in on the best practices for creating the ideal design data package for your design.
Designing Through the Noise
Our experts discuss the constantly evolving world of RF design, including the many tradeoffs, material considerations, and design tips and techniques that designers and design engineers need to know to succeed in this high-frequency realm.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
New RF Materials Offer Options for RF Designers
April 29, 2025 | Andy Shaughnessy, Design007 MagazineEstimated reading time: 2 minutes

The RF materials arena has changed quite a bit in the past decade. The newest thermoset laminates boast performance numbers that are almost competitive with PTFE, but without the manufacturability challenges.
At IPC APEX EXPO this year, I spoke with Brent Mayfield, business development manager at AGC Multi Material America. Brent walked through some recent innovations in RF materials, advances in resin systems, and the many design trade-offs for RF engineers to consider for each material set.
Andy Shaughnessy: Brent, this issue focuses on RF design techniques. What are your thoughts on the RF materials landscape and the challenges your customers are facing?
Brent Mayfield: Traditionally, much of the RF business has been focused on aerospace and defense. The RF material sets have historically been considered unfriendly to the fabrication process, which limited commercial adoption. As things have expanded, RF applications have spread across all electronics. The commercial side is now leaning into phased arrays and trying to do what the military has been doing for decades, when they were typically using PTFE materials. Often, with these high-performance phased arrays, you weren’t getting what you wanted with yields, but it was the only way to get the performance. The thermoset materials that were available at the time really couldn't achieve that type of performance.
Around 2015, we started seeing a turn toward high-speed digital materials, and then it became a lot easier to build RF products. But there are still performance challenges. We always ask, “What do you need to achieve from the material?” Often the response is, “We need it to be ultra low-loss.” If you're looking for what you could have gotten with PTFE, you won’t quite get that. While the Df specification for the latest thermosets is getting close, there are mechanical performance characteristics that just don’t match up. For instance, with PTFE, you have very good adhesion to copper foils with minimal roughness. With thermosets, you just can't achieve the same level adhesion of copper. It's about trying to strike a balance. How do you know what will work? If I go to consumer goods, it's considered a high-end product where they will deal with drop tests. With a radio for first responders, the drop test is much higher. How do we deal with this type of issue? Often, we start by focusing on electrical performance, but when we get to mechanical performance for different types of applications, we see that there are limits to what we can do.
We have to do a lot more engineering work. Even in the defense industry, there's a lot more volume using high-performance thermosets. Added to that are the commercial OEMs looking closer at the cost. What's the manufacturability? That's our focus. PTFE isn’t going away. There are some very special things about PTFE; it is still best for high-power—high-power antennas, RF power amplifiers, high-power couplers, etc. But the thermoset will lead the way from a volume perspective if that isn’t already happening. How do we start bettering some of the performance characteristics from a mechanical standpoint so that these thermosets can do some of the things that maybe you're still reserving for PTFE now?
To continue reading this interview, which originally appeared in the April 2025 Design007 Magazine, click here.
Suggested Items
Nordson Electronics Solutions Develops Panel-level Packaging Solution for Powertech Technology, Inc. That Achieves Yields Greater Than 99% for Underfilling During Semiconductor Manufacturing
06/11/2025 | Nordson Electronics SolutionsNordson Electronics Solutions, a global leader in reliable electronics manufacturing technologies, has developed several solutions for panel-level packaging (PLP) during semiconductor manufacturing. In one particular case, Nordson’s customer, Powertech Technology, Inc. (PTI) saw underfill yields improve to greater than 99% as they plan to transition from wafers to panels in their manufacturing operations. edwd
Keysight, Synopsys Deliver an AI-Powered RF Design Migration Flow
06/06/2025 | BUSINESS WIREKeysight Technologies, Inc. and Synopsys, Inc. introduced an AI-powered RF design migration flow to expedite migration from TSMC’s N6RF+ process to N4P technology, to address the performance requirements of today’s most demanding wireless integrated circuit applications.
AMD Acquires Brium to Strengthen Open AI Software Ecosystem
06/05/2025 | AMDAt AMD, we’re committed to building a high-performance, open AI software ecosystem that empowers developers and drives innovation. Today, we’re excited to take another step forward with the acquisition of Brium, a team of world-class compiler and AI software experts with deep expertise in machine learning, AI inference, and performance optimization.
Cadence Extends Support for Automotive Solutions on Arm Zena Compute Subsystems
06/05/2025 | Cadence Design Systems, Inc.Cadence announced IP, design solution, and expert design services for software and Systems-on-Chip (SoCs) based on Arm® Zena™ Compute Subsystems (CSS), Arm’s first-generation CSS for automotive.
L3Harris Receives Contract to Develop Next-Generation Security Processor for US Government
06/02/2025 | L3Harris TechnologiesL3Harris Technologies has been awarded a contract by the U.S. government to develop a next-generation security processor to secure communication devices across the globe.