-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueRules of Thumb
This month, we delve into rules of thumb—which ones work, which ones should be avoided. Rules of thumb are everywhere, but there may be hundreds of rules of thumb for PCB design. How do we separate the wheat from the chaff, so to speak?
Partial HDI
Our expert contributors provide a complete, detailed view of partial HDI this month. Most experienced PCB designers can start using this approach right away, but you need to know these tips, tricks and techniques first.
Silicon to Systems: From Soup to Nuts
This month, we asked our expert contributors to weigh in on silicon to systems—what it means to PCB designers and design engineers, EDA companies, and the rest of the PCB supply chain... from soup to nuts.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
Estimated reading time: 1 minute
Contact Columnist Form
How Electromagnetic Fields Determine Impedance, Part 1
We talk a lot about trace dimensions and relationships when discussing signal integrity issues. In particular, we like to talk about how close traces are to underlying planes and how close traces are to each other. But there is another way to think about things that is sometimes much more practical and intuitive, and that is by thinking about the electromagnetic field around the trace(s) we are considering. The position and shape of the electromagnetic field can tell us a lot about trace impedance, EMI and crosstalk coupling, and signal propagation speed.
When a current flows down a conductor an electric field and a magnetic field radiates away from that conductor. Collectively, this is called the electromagnetic field. What is important to note is that this field always exists. Furthermore, the electromagnetic field and the current are inseparable. That is: (a) the electric field can’t move ahead of the magnetic field; (b) the magnetic field can’t move ahead of the electric field; and (c) neither field can get ahead of or fall behind the current itself. They all have to move together along the conductor.
Read the full column here.
Editor's Note: This column originally appeared in the August 2013 issue of The PCB Design Magazine.
More Columns from Brooks' Bits
Brooks' Bits: Internal Trace Temperatures—More Complicated Than You ThinkBrooks' Bits: Electromagnetic Fields, Part 3 - How They Impact Coupling
Brooks' Bits: Electromagnetic Fields, Part 2: How They Impact Propagation Speed
Brooks' Bits: How Electromagnetic Fields Determine Impedance, Part 1
Trace Currents and Temperature, Part 4: Via Heat
Trace Currents and Temperature, Part 3: Fusing Currents
Trace Currents and Temperature, Part 1: The Basic Model
The Skinny on Skin Effect, Part 3: Crossover Frequency