-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueSignal Integrity
If you don’t have signal integrity problems now, you will eventually. This month, our expert contributors share a variety of SI techniques that can help designers avoid ground bounce, crosstalk, parasitic issues, and much more.
Proper Floor Planning
Floor planning decisions can make or break performance, manufacturability, and timelines. This month’s contributors weigh in with their best practices for proper floor planning and specific strategies to get it right.
Showing Some Constraint
A strong design constraint strategy carefully balances a wide range of electrical and manufacturing trade-offs. This month, we explore the key requirements, common challenges, and best practices behind building an effective constraint strategy.
- Articles
- Columns
- Links
- Media kit
||| MENU - design007 Magazine
From the CAM Shop: Tight Tolerance Design Tips
July 8, 2016 | Mark Thompson, CID, Prototron CircuitsEstimated reading time: 2 minutes

After you finish your design, it winds up in the hands of people like Mark Thompson, the man who runs the CAM department at Prototron Circuits in Redmond, Washington. He sees CAD data firsthand, and often has to address errors and inconsistencies in PCB designs. For this issue, we asked Mark to discuss the today’s tight tolerances, some of the problems they can cause PCB designers, and what designers can do when dealing with shrinking features.
Andy Shaughnessy: What are the tightest tolerances you are currently building?
Mark Thompson: First off, that is a great question. We have long said in fabrication if you added up all the accumulative tolerances a fab shop has to deal with the part would be physically impossible to build. Having said that, unusual process tolerances CAN be achieved, such as plated holes with a +/-.002” tolerance for press-fit devices. One fab shop may say that the best they can do for plated holes and slots/cutouts would be +/-.003” but often we can do +/-.002”. How is that possible, you ask? For one thing, we can tell the CAM system to select a tool that is +.004-.000”. This selects a tool that works best for a +/-.002” final tolerance.
Another typical tolerance issue is with controlled impedance. Many fabricators ask for +/-15% tolerance for traces thinner than .0035”. This is not uncommon considering that just 10% = less than half a mil of total accumulated deviation throughout the fabrication process. The good news is that most fabricators use a field solver for the impedances, which means they can adjust for process variables like plate, etch, mask thickness, etc. And ultimately this means that even in situations where a fabricator may ask for +/-15%, they may incur as little as 5% deviation if they have good process control. I guess I would end by saying if the customer has some unusual tolerances they need to achieve. I recommend speak with your chosen fabricator to make sure they can be met.
Shaughnessy: What are the most challenging issues fabricators face regarding fine spaces, traces, and pitch?
Thompson: Another great question. There are many. First and foremost is the chosen copper weight vs. trace and space. Many times this comes down to what a fabricator has to do for compensations for the process. In this case, we are talking about etch compensations.
Let’s say you have a .1 mm trace and space design and you desire 3 oz. finish. The general rule of thumb is that for every half ounce of starting copper, we do a half-mil etch compensation. For three ounces we would need a .003” etch comp, and if the space is .00393” (.1 mm) we would be left with a .00093”, space which is way outside of most folks’ capabilities.
To read this entire article, which appeared in the June 2016 issue of The PCB Design Magazine, click here.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Closing the Loop on PCB Etching Waste
09/09/2025 | Shawn Stone, IECAs the PCB industry continues its push toward greener, more cost-efficient operations, Sigma Engineering’s Mecer System offers a comprehensive solution to two of the industry’s most persistent pain points: etchant consumption and rinse water waste. Designed as a modular, fully automated platform, the Mecer System regenerates spent copper etchants—both alkaline and acidic—and simultaneously recycles rinse water, transforming a traditionally linear chemical process into a closed-loop system.
Driving Innovation: Depth Routing Processes—Achieving Unparalleled Precision in Complex PCBs
09/08/2025 | Kurt Palmer -- Column: Driving InnovationIn PCB manufacturing, the demand for increasingly complex and miniaturized designs continually pushes the boundaries of traditional fabrication methods, including depth routing. Success in these applications demands not only on robust machinery but also sophisticated control functions. PCB manufacturers rely on advanced machine features and process methodologies to meet their precise depth routing goals. Here, I’ll explore some crucial functions that empower manufacturers to master complex depth routing challenges.
Trouble in Your Tank: Minimizing Small-via Defects for High-reliability PCBs
08/27/2025 | Michael Carano -- Column: Trouble in Your TankTo quote the comedian Stephen Wright, “If at first you don’t succeed, then skydiving is not for you.” That can be the battle cry when you find that only small-diameter vias are exhibiting voids. Why are small holes more prone to voids than larger vias when processed through electroless copper? There are several reasons.
The Government Circuit: Navigating New Trade Headwinds and New Partnerships
08/25/2025 | Chris Mitchell -- Column: The Government CircuitAs global trade winds continue to howl, the electronics manufacturing industry finds itself at a critical juncture. After months of warnings, the U.S. Government has implemented a broad array of tariff increases, with fresh duties hitting copper-based products, semiconductors, and imports from many nations. On the positive side, tentative trade agreements with Europe, China, Japan, and other nations are providing at least some clarity and counterbalance.