-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueSignal Integrity
If you don’t have signal integrity problems now, you will eventually. This month, our expert contributors share a variety of SI techniques that can help designers avoid ground bounce, crosstalk, parasitic issues, and much more.
Proper Floor Planning
Floor planning decisions can make or break performance, manufacturability, and timelines. This month’s contributors weigh in with their best practices for proper floor planning and specific strategies to get it right.
Showing Some Constraint
A strong design constraint strategy carefully balances a wide range of electrical and manufacturing trade-offs. This month, we explore the key requirements, common challenges, and best practices behind building an effective constraint strategy.
- Articles
- Columns
- Links
- Media kit
||| MENU - design007 Magazine
The Fundamentals of Improving PCB Thermal Design
October 3, 2016 | Gabriel Ciobanu, Continental Corp., and Boris Marovic, Mentor GraphicsEstimated reading time: 1 minute
Continental's automobile engineers have many years of experience building critical parts and systems for automobiles, from the chassis and safety systems to the powertrain, interior control systems, and tires. Much has changed in the past decade, and electronic technology has become an important aspect of what the company supplies to OEM and other manufacturers worldwide. Electronics are doing more now than ever to provide safer cars, cleaner power, more mobility, and smarter driving.
Making sure that automotive electronics are reliable, safe, and properly designed begins at the component level. Heat must be addressed early in the design process for these goals to be achieved. The most important thermal resistance for heat, outside the IC package, is the PCB. Continental engineers use 3D computational fluid dynamics (CFD) to simulate and test a PCB’s thermal design. Modeling the main heat flow paths in detail is critical to ensure that generated heat in the component flows out to the ambient, either through convection, conduction, or radiation. Knowing the thermal junction resistance allows optimizing a design for more efficient and less costly heatsinks, materials, and ICs.
When building a model to use in simulation, different methods can be used to represent chip packages and PCBs. Chip packages are typically defined as four types. The simple cuboid is a lumped component with some material properties and a heat source applied to it. The 2-resistor model doesn’t include any thermal capacitance and is therefore not suitable for transient analysis of component temperatures. The Delphi model is comprised of several thermal resistances and capacitances and thus is more accurate and suitable for transient simulations. Finally, the detailed model is modeled explicitly and is the most accurate model; however, it also increases the simulation time and requirements for computing resources.
For the PCB, four detailing levels from simple to complex also are used in simulation: lumped approximation, individual layers’ representation, layers modeled with “patches,” and copper tracks and areas modeled in detail.
To read this entire article, which appeared in the September 2016 issue of The PCB Design Magazine, click here.
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Closing the Loop on PCB Etching Waste
09/09/2025 | Shawn Stone, IECAs the PCB industry continues its push toward greener, more cost-efficient operations, Sigma Engineering’s Mecer System offers a comprehensive solution to two of the industry’s most persistent pain points: etchant consumption and rinse water waste. Designed as a modular, fully automated platform, the Mecer System regenerates spent copper etchants—both alkaline and acidic—and simultaneously recycles rinse water, transforming a traditionally linear chemical process into a closed-loop system.
Driving Innovation: Depth Routing Processes—Achieving Unparalleled Precision in Complex PCBs
09/08/2025 | Kurt Palmer -- Column: Driving InnovationIn PCB manufacturing, the demand for increasingly complex and miniaturized designs continually pushes the boundaries of traditional fabrication methods, including depth routing. Success in these applications demands not only on robust machinery but also sophisticated control functions. PCB manufacturers rely on advanced machine features and process methodologies to meet their precise depth routing goals. Here, I’ll explore some crucial functions that empower manufacturers to master complex depth routing challenges.
Trouble in Your Tank: Minimizing Small-via Defects for High-reliability PCBs
08/27/2025 | Michael Carano -- Column: Trouble in Your TankTo quote the comedian Stephen Wright, “If at first you don’t succeed, then skydiving is not for you.” That can be the battle cry when you find that only small-diameter vias are exhibiting voids. Why are small holes more prone to voids than larger vias when processed through electroless copper? There are several reasons.
The Government Circuit: Navigating New Trade Headwinds and New Partnerships
08/25/2025 | Chris Mitchell -- Column: The Government CircuitAs global trade winds continue to howl, the electronics manufacturing industry finds itself at a critical juncture. After months of warnings, the U.S. Government has implemented a broad array of tariff increases, with fresh duties hitting copper-based products, semiconductors, and imports from many nations. On the positive side, tentative trade agreements with Europe, China, Japan, and other nations are providing at least some clarity and counterbalance.