-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueRules of Thumb
This month, we delve into rules of thumb—which ones work, which ones should be avoided. Rules of thumb are everywhere, but there may be hundreds of rules of thumb for PCB design. How do we separate the wheat from the chaff, so to speak?
Partial HDI
Our expert contributors provide a complete, detailed view of partial HDI this month. Most experienced PCB designers can start using this approach right away, but you need to know these tips, tricks and techniques first.
Silicon to Systems: From Soup to Nuts
This month, we asked our expert contributors to weigh in on silicon to systems—what it means to PCB designers and design engineers, EDA companies, and the rest of the PCB supply chain... from soup to nuts.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
A New Power Design Methodology for PCB Designs
March 15, 2017 | Dingru Xiao, Cadence Design SystemsEstimated reading time: 2 minutes
Abstract
Advanced PCB design is an iterative process of analysis-fix-analysis. Historically, this process is very time-consuming, requiring analysis experts and PCB designers to work together to find and fix layout problems. This article describes a new PCB design methodology that allows a PCB designer to perform the power design without having to run expert-level analysis tools. This methodology provides the setup automation for advanced analysis without the need to understand every minute parameter, and can be completed in a few steps.
User-friendly analysis reports guide the PCB designer to the exact location where design changes must be made to meet specifications. IPC standard-based constraint of automatic calculations helps PCB designers understand how good is good enough for the layout changes. All violations of IPC standards can be marked directly in the layout, so PCB designers can easily find the problems in the layout and fix them before handing the design over to the power integrity (PI) experts. This allows PI experts focus on performance optimization, cost reduction, and other issues, so a high-quality design can be produced in a shorter amount of time.
For modern electronic systems, power design has become more important with the requirements of low power, minimization, high density and high-speed data rate for high-end applications. Usually, the planes, copper pours, routed power traces and vias on a PCB serve as power distribution, signal return paths, heat dissipation and so on.
The following questions must be considered:
- How does the PI engineer communicate with the hardware engineer and PCB designer about problems with the design and guidance on how to fix it?
- How does the PCB designer communicate with the PI engineer about solutions to those problems?
- How can the design engineer and PCB designer determine whether a solution is good in the early stage?
Generally, PI engineers communicate with PCB designers by email, phone calls, or meeting face to face to discuss the issues and the solutions to fix problems with the layout.
Unlike when analyzing signal integrity, PI engineers are not usually involved in the early stages of the design because of the lack of pre-layout analysis tools for power analysis in the industry. The first cut of PCB power design usually is based on experience and industry conventions, so many power problems only surface late in the process, leaving PI engineers to focus mainly on the post-layout verifications for power systems. Also, PCB designers generally do not want to use professional analysis tools because of their complicated settings and different EDA tools/platforms.
This lag time greatly affects the efficiency of design and the time-to-market of the products.
To read this entire article, which appeared in the February 2016 issue of The PCB Design Magazine, click here.
Suggested Items
Unlocking Advanced Circuitry Through Liquid Metal Ink
10/31/2024 | I-Connect007 Editorial TeamPCB UHDI technologist John Johnson of American Standard Circuits discusses the evolving landscape of electronics manufacturing and the critical role of innovation, specifically liquid metal ink technology, as an alternate process to traditional metallization in PCB fabrication to achieve ever finer features and tighter tolerances. The discussion highlights the benefits of reliability, efficiency, and yields as a tradeoff to any increased cost to run the process. As this technology becomes better understood and accepted, even sought out by customers and designers, John says there is a move toward mainstream incorporation.
Fresh PCB Concepts: The Critical Nature of Copper Thickness on PCBs
10/31/2024 | Team NCAB -- Column: Fresh PCB ConceptsPCBs are the backbone of modern electronics and the copper layers within these boards serve as the primary pathways for electrical signals. When designing and manufacturing PCBs, copper thickness is one of the most critical factors and significantly affects the board’s performance and durability. The IPC-6012F specification, the industry standard for the performance and qualification of rigid PCBs, sets clear guidelines on copper thickness to ensure reliability in different environments and applications.
Book Excerpt: The Printed Circuit Designer’s Guide to... DFM Essentials, Ch. 1
10/25/2024 | I-Connect007The guidelines offered in this book are based on both ASC recommendations and IPC standards with the understanding that some may require adjustment based on the material set, fabricator processes, and other design constraints. This chapter details high-frequency materials, copper foil types, metal core PCBs, and the benefits of embedded capacitance and resistor materials in multilayer PCBs.
The Cost-Benefit Analysis of Direct Metallization
10/21/2024 | Carmichael Gugliotti, MacDermid AlphaCarmichael Gugliotti of MacDermid Alpha discusses the innovative realm of direct metallization technology, its numerous applications, and significant advantages over traditional processes. Carmichael offers an in-depth look at how direct metallization, through developments such as Blackhole and Shadow, is revolutionizing PCB manufacturing by enhancing efficiency, sustainability, and cost-effectiveness. From its origins in the 1980s to its application in cutting-edge, high-density interconnects and its pivotal role in sustainability, this discussion sheds light on how direct metallization shapes the future of PCB manufacturing across various industries, including automotive, consumer electronics, and beyond.
Connect the Dots: Designing for Reality—Pattern Plating
10/16/2024 | Matt Stevenson -- Column: Connect the DotsIn the previous episode of I-Connect007’s On the Line with… podcast, we painted the picture of the outer layer imaging process. Now we are ready for pattern plating, where fabrication can get tricky. The board is now ready to receive the copper traces, pads, and other elements specified in the original CAD design. This article will lay out the pattern plating process and discuss constraints in the chemistries that must be properly managed to meet the customer's exacting manufacturing tolerances.