-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueDesigning Through the Noise
Our experts discuss the constantly evolving world of RF design, including the many tradeoffs, material considerations, and design tips and techniques that designers and design engineers need to know to succeed in this high-frequency realm.
Learning to Speak ‘Fab’
Our expert contributors clear up many of the miscommunication problems between PCB designers and their fab and assembly stakeholders. As you will see, a little extra planning early in the design cycle can go a long way toward maintaining open lines of communication with the fab and assembly folks.
Training New Designers
Where will we find the next generation of PCB designers and design engineers? Once we locate them, how will we train and educate them? What will PCB designers of the future need to master to deal with tomorrow’s technology?
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
A New Power Design Methodology for PCB Designs
March 15, 2017 | Dingru Xiao, Cadence Design SystemsEstimated reading time: 2 minutes

Abstract
Advanced PCB design is an iterative process of analysis-fix-analysis. Historically, this process is very time-consuming, requiring analysis experts and PCB designers to work together to find and fix layout problems. This article describes a new PCB design methodology that allows a PCB designer to perform the power design without having to run expert-level analysis tools. This methodology provides the setup automation for advanced analysis without the need to understand every minute parameter, and can be completed in a few steps.
User-friendly analysis reports guide the PCB designer to the exact location where design changes must be made to meet specifications. IPC standard-based constraint of automatic calculations helps PCB designers understand how good is good enough for the layout changes. All violations of IPC standards can be marked directly in the layout, so PCB designers can easily find the problems in the layout and fix them before handing the design over to the power integrity (PI) experts. This allows PI experts focus on performance optimization, cost reduction, and other issues, so a high-quality design can be produced in a shorter amount of time.
For modern electronic systems, power design has become more important with the requirements of low power, minimization, high density and high-speed data rate for high-end applications. Usually, the planes, copper pours, routed power traces and vias on a PCB serve as power distribution, signal return paths, heat dissipation and so on.
The following questions must be considered:
- How does the PI engineer communicate with the hardware engineer and PCB designer about problems with the design and guidance on how to fix it?
- How does the PCB designer communicate with the PI engineer about solutions to those problems?
- How can the design engineer and PCB designer determine whether a solution is good in the early stage?
Generally, PI engineers communicate with PCB designers by email, phone calls, or meeting face to face to discuss the issues and the solutions to fix problems with the layout.
Unlike when analyzing signal integrity, PI engineers are not usually involved in the early stages of the design because of the lack of pre-layout analysis tools for power analysis in the industry. The first cut of PCB power design usually is based on experience and industry conventions, so many power problems only surface late in the process, leaving PI engineers to focus mainly on the post-layout verifications for power systems. Also, PCB designers generally do not want to use professional analysis tools because of their complicated settings and different EDA tools/platforms.
This lag time greatly affects the efficiency of design and the time-to-market of the products.
To read this entire article, which appeared in the February 2016 issue of The PCB Design Magazine, click here.
Suggested Items
RF PCB Design Tips and Tricks
05/08/2025 | Cherie Litson, EPTAC MIT CID/CID+There are many great books, videos, and information online about designing PCBs for RF circuits. A few of my favorite RF sources are Hans Rosenberg, Stephen Chavez, and Rick Hartley, but there are many more. These PCB design engineers have a very good perspective on what it takes to take an RF design from schematic concept to PCB layout.
Elephantech: For a Greener Tomorrow
04/16/2025 | Marcy LaRont, PCB007 MagazineNobuhiko Okamoto is the global sales and marketing manager for Elephantech Inc., a Japanese startup with a vision to make electronics more sustainable. The company is developing a metal inkjet technology that can print directly on the substrate and then give it a copper thickness by plating. In this interview, he discusses this novel technology's environmental advantages, as well as its potential benefits for the PCB manufacturing and semiconductor packaging segments.
Trouble in Your Tank: Organic Addition Agents in Electrolytic Copper Plating
04/15/2025 | Michael Carano -- Column: Trouble in Your TankThere are numerous factors at play in the science of electroplating or, as most often called, electrolytic plating. One critical element is the use of organic addition agents and their role in copper plating. The function and use of these chemical compounds will be explored in more detail.
IDTechEx Highlights Recyclable Materials for PCBs
04/10/2025 | IDTechExConventional printed circuit board (PCB) manufacturing is wasteful, harmful to the environment and energy intensive. This can be mitigated by the implementation of new recyclable materials and technologies, which have the potential to revolutionize electronics manufacturing.
Connect the Dots: Stop Killing Your Yield—The Hidden Cost of Design Oversights
04/03/2025 | Matt Stevenson -- Column: Connect the DotsI’ve been in this industry long enough to recognize red flags in PCB designs. When designers send over PCBs that look great on the computer screen but have hidden flaws, it can lead to manufacturing problems. I have seen this happen too often: manufacturing delays, yield losses, and designers asking, “Why didn’t anyone tell me sooner?” Here’s the thing: Minor design improvements can greatly impact manufacturing yield, and design oversights can lead to expensive bottlenecks. Here’s how to find the hidden flaws in a design and avoid disaster.