-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueSpotlight on India
We invite you on a virtual tour of India’s thriving ecosystem, guided by the Global Electronics Association’s India office staff, who share their insights into the region’s growth and opportunities.
Supply Chain Strategies
A successful brand is built on strong customer relationships—anchored by a well-orchestrated supply chain at its core. This month, we look at how managing your supply chain directly influences customer perception.
What's Your Sweet Spot?
Are you in a niche that’s growing or shrinking? Is it time to reassess and refocus? We spotlight companies thriving by redefining or reinforcing their niche. What are their insights?
- Articles
- Columns
- Links
- Media kit
||| MENU - smt007 Magazine
Your In-depth Guide to Reducing Electronics Manufacturing Waste
April 24, 2017 | Danielle Olivier, JJS ManufacturingEstimated reading time: 8 minutes

Waste is a common problem within the electronics manufacturing industry. Whether large volumes of faulty smartphones need recalling or small batches of complex PCB assemblies need reworking, waste can be time consuming and costly to rectify.
In essence, waste is a non-value adding process. If left unnoticed, it can damage reputations and, ultimately, lead to businesses becoming uncompetitive. The good news is there are a number of techniques that can help you identify processes that contribute to high volumes of waste.
In this guide, we introduce you to the principles of DMAIC, Six Sigma and Lean manufacturing, so that you can implement a suitable strategy to minimize your waste output.
What is Waste?
Waste can present itself in various formats but, in simple terms, it can be defined as a product or process that causes delay or defect. Keeping within these two categories, and according to Lean principles, waste (or muda) can be split into seven sub-categories:
1. Transport – this doesn't solely relate to the shipping of goods, it can also include other unnecessary transportation – i.e. moving people, products and information to places they don't need to be.
2. Inventory – the storage of parts, products, pieces or documentation awaiting appropriate processing.
3. Motion – people or equipment moving or walking more than is required to perform the processing.
4. Waiting – the downtime caused by waiting for the next production step - for example, during shift changeover or delayed receipt of vital parts.
5. Overproduction – production ahead of demand.
6. Over processing – relying on inspection to catch issues rather than designing the process to eliminate problems upfront.
7. Defects – rework, scrap, incorrect documentation, etc.
It is important to note that these seven categories are not exhaustive. Other forms of waste have been identified, such as manufacturing goods or services that do not meet customer demands or needs and the under-utilization of skills. By identifying these traits within your own manufacturing facility and then implementing suitable process changes, it's possible to start seeing significant reductions in your waste output.
Techniques that can Help You Identify Waste
DMAIC (project management)
DMAIC is a data-driven processing tool that allows you to logically format an issue and plan around its continuous improvement. The tool demands you break down a problem and then adopt a solution in one logical flow. Each point within the acronym stands for a stage within the process. By following the stages chronologically, identifying wasteful processes and implementing improvements soon become accessible and measurable:
- Define the problem, improvement activity, opportunity for improvement, the project goals, and customer (internal and external) requirements.
- Measure process performance.
- Analyze the process to understand the causes of poor performance.
- Improve process performance by addressing and removing the cause.
- Control the improved process and monitor future performance.
Within the measure (M) and analyse (A) stages of a DMAIC project, Lean manufacturing and Six Sigma strategies are generally implemented to gain the best possible outcome. Lean manufacturing is a model armed with tools that aim to simplify and streamline a process in order to eliminate delay. In turn, Six Sigma is a methodology aimed at optimising and stabilising a process in order to eliminate defects.
Six Sigma (Optimizing and Stabilizing a Process)
Six Sigma focuses on optimizing and stabilizing a process in order to minimize defect levels. Some of the tools that encompass this methodology include control charts, Pareto charts and histograms:
Control chart
Control charts are a statistical process control (SPC) tool that are used to show whether or not your manufacturing processes are in a state of control. The graph uses collected quantitative data from a particular process, which is inputted to collate a base line performance. A realistic target line, derived from your current business position and future targets, is then inputted on top of this. It is then possible to see whether the process is reaching, exceeding or failing to meet your businesses targets. If you regularly miss the target it may be worthwhile re-evaluating your current process using one of the process improvement tools highlighted in the next section of this post.
Pareto chart
This data analysis chart combines both bar charts (individual values in descending order) and line graphs (cumulative total) in order to show which variables contribute most to a process issue. By identifying a defect and investigating the data you can then use a Pareto chart to highlight your findings. A Pareto chart can often identify the most common source of defect, or even the highest occurring defect, both of which are likely contributors to a high waste output. By analyzing your data successfully in this way you can look at ways to combat these problems and, ultimately, lower your manufacturing waste.
Histogram
A histogram is a step-column chart that displays a summary of the variations in (frequency distribution of) quantities (called classes) that fall within certain lower and upper limits in a set of data. Like Pareto and control charts, a histogram is another way to display data in order to identify harmful variances within a process that could be increasing your waste levels. Being aware of these analytical tools can help identify triggers of waste within your business and make the improvement process smoother and easier to integrate into production. In turn, they can help lower costs and improve efficiency, while returning your focus back to manufacturing quality products on a consistent basis.
Lean Manufacturing (Simplifying and Streamlining a Process)
5S, spaghetti diagrams and process mapping are all examples of improvement tools that have the primary intention of streamlining and simplifying a process in order to eliminate delay (a key contributor of waste) within your manufacturing process.
5S
The 5S system is an approach to organizing and standardizing an area to ensure it is optimized for maximum efficiency. By following the five steps, derived from the philosophy of Kaizen, it is possible to minimize the amount of waste an area within your manufacturing facility outputs.
The five stages are:
1. Being organized is key to minimizing waste. By sorting the work area and throwing away anything that doesn’t add value, it is easier to notice problems and address them with solutions.
Page 1 of 2
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
More Than a Competition: Instilling a Champion's Skill in IPC Masters China 2025
09/01/2025 | Evelyn Cui, Global Electronics Association—East AsiaNearly 500 elite professionals from the electronics industry, representing 18 provinces and municipalities across China, competed in the 2025 IPC Masters Competition China, March 26–28, in Pudong, Shanghai. A total of 114 contestants advanced to the practical competition after passing the IPC Standards Knowledge Competition. Sixty people competed in the Hand Soldering and Rework Competition (HSRC), 30 in the Cable and Wire Harness Assembly Competition (CWAC), and 24 in the Ball Grid Array/Bottom Termination Components (BGA/BTC) Rework Competition.
BEST Inc. Provides High-Reliability BGA Reballing and Component Rework Services
08/22/2025 | BEST Inc.BEST Inc., a leader in electronic component services, is pleased to announce its component rework services are available for all types of area array devices including ball grid array, land grid array and quad flat no-lead SMT packages.
A.R.T. Ltd. Nominated in Four Categories at 2025 Instrumentation and Electronics Industry Awards
08/11/2025 | A.R.T. Ltd.Advanced Rework Technology Ltd. (A.R.T. Ltd.), a leading provider of electronics training and consultancy, has been shortlisted in four categories at the 2025 Instrumentation and Electronics Industry Awards, including Industry Personality, Academic Support, Rising Star, and Best Customer Service.
Automated Production Equipment and Manncorp Announce Strategic Partnership to Expand SMT Solutions for U.S. Electronics Manufacturers
08/06/2025 | Automated Production EquipmentAutomated Production Equipment (APE), a trusted supplier of high-performance soldering and rework systems, proudly announces a strategic partnership with Manncorp, a leading provider of Surface Mount Technology (SMT) production equipment. This collaboration brings together two industry leaders to deliver expanded, end-to-end SMT solutions to electronics manufacturers across North America.
Solving the Toughest BGA Challenges in Electronics
07/30/2025 | Nash Bell, BEST Inc.Since the late 1990s, ball grid array (BGA) packages have emerged as a preferred package style for electronic devices. Compared with high-density ultra-fine pitch quad flat packs (QFPs), BGA packages significantly reduce the required footprint on printed circuit boards (PCBs) by approximately 50%.