-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueDo You Have X-ray Vision?
Has X-ray’s time finally come in electronics manufacturing? Join us in this issue of SMT007 Magazine, where we answer this question and others to bring more efficiency to your bottom line.
IPC APEX EXPO 2025: A Preview
It’s that time again. If you’re going to Anaheim for IPC APEX EXPO 2025, we’ll see you there. In the meantime, consider this issue of SMT007 Magazine to be your golden ticket to planning the show.
Technical Resources
Key industry organizations–all with knowledge sharing as a part of their mission–share their technical repositories in this issue of SMT007 Magazine. Where can you find information critical to your work? Odds are, right here.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - smt007 Magazine
X-Ray Inspection of Lead and Lead-Free Solder Joints
July 31, 2017 | Glen Thomas, Ph.D., and Bill Cardoso, Ph.D., Creative Electron Inc.Estimated reading time: 13 minutes
where Emax is the maximum energy in the spectrum, which is 150keV for the X-ray machine used in this paper.
TIN-LEAD SOLDER VS. LEAD-FREE SOLDERS
There are a number of lead-free solder compounds in the market today. For examples in this analysis we used some of the solder compounds discussed in [5]. In particular, we compare eutectic tin-lead solder (63Sn/37Pb), tin-bismuth (42Sn/58Bi), and a variety of predominantly tin based solders, including tin-silver (98Sn/2Ag), tin-antimony (95Sn/5Sb), tin-indium-silver (77.2Sn/10In/2.8Ag), and tin-silver-copper (96.3Sn/3.2Ag/0.5Cu).
Solder compounds can be classified according to those he deems most likely lead-free alternatives, all of which have at least 95% Sn content[5]. In our analysis, we consider three of these (98Sn/2Ag, 95Sn/5Sb, and 96.3Sn/3.2Ag/0.5Cu). The others are provided for comparison purposes. Equation 4 must be discretized for evaluation. Using a Creative Electron’s proprietary emulation and simulation software, we computed the energy spectra and attenuation coefficients for 16 bands of 10keV width spanning 10keV to 160keV. Equation 4 in discrete form then becomes:
Using this data and accounting for filtration due to the X-ray source anode materials, we obtain values for all p(Ei ). The results are summarized in Figure 5. In Figure 6 we provide the stopping power (i.e., 1-I/I0) for five lead-free solder compounds and eutectic tin-lead solder at thicknesses of 2 mil, 5 mil, 10 mil, and 20 mil. The stopping power indicates the relative amount of X-rays that are attenuated in the material. For example, a stopping power of 0.75 means that three-quarters of the incident radiation is attenuated. Higher numbers consequently imply higher attenuation.
Figure 5: Energy spectrum of a TruView FUSION with a 150kV microfocus X-ray source.
Figure 6: Attenuation of lead-free solders and eutectic tin-lead solder. Note that the amount of attenuation at different material thicknesses is similar.
X-RAY IMAGE ANALYSIS
To validate the analysis presented in the previous session our Advanced Technology Group inspected a wide range of samples with both lead and lead-free solder composites. We compared eutectic tin-lead (63Sn/37Pb) and tin-bismuth (42Sn/58Bi) solders for their imaging profile using a TruView FUSION running at a maximum of 150kV. As expected, the X-ray images obtained from the samples using both types of solder did not present a notable difference. Please note that it is not the focus of this paper to compare the overall performance between lead and lead-free solders. Instead, the objective of this analysis is to validate that the X-ray machine settings work for both lead and lead-free solders.
Figure 7: Gullwing solder joints using both lead and leadfree solder paste. Note that the lead-free solder is slightly lighter (less dense) than the lead solder joint.
Page 3 of 5
Suggested Items
Real Time with... IPC APEX EXPO 2025: New Dispensing and Coating Solutions
04/03/2025 | Real Time with...IPC APEX EXPOMichael Hanke, Global Sales Officer at Rehm, discusses new dispensing and coating equipment developed in Germany. He emphasizes the significance of software integration with customer systems to tackle market challenges.
BEST Inc. Presents StencilQuik for Simplifying BGA Rework Challenges
04/02/2025 | BEST Inc.BEST Inc., a leader in electronic component rework services, training, and rework tools is thrilled to announce StencilQuik™ rework stencils. This innovative product is specifically designed for placing Ball Grid Arrays (BGAs) or Chip Scale Packages (CSPs) during the rework process.
Real Time with... IPC APEX EXPO 2025: Nordson's Expansion of Intelligent Technologies
04/02/2025 | Real Time with...IPC APEX EXPOJonathia Ang-Mueller gives an update on Nordson's latest selective soldering system which features a small footprint, offering cost savings and increased production capacity. Advanced software allows for pre-sales simulations, enhancing customer engagement.
Knocking Down the Bone Pile: Basics of Component Lead Tinning
04/02/2025 | Nash Bell -- Column: Knocking Down the Bone PileThe component lead tinning process serves several critical functions, including removing gold plating, mitigation of tin whiskers, reconditioning of component solderability issues, and alloy conversion from lead-free (Pb-free) to tin-lead or from tin-lead to lead-free for RoHS compliance. We will cover each of these topics in more detail in upcoming columns.
Real Time with... IPC APEX EXPO 2025: Innovations at Indium Corporation—A Look into the Future
04/02/2025 | Real Time with...IPC APEX EXPOIndium Corporation, led by CEO Ross Berntson, is making strides in automotive applications with innovative solder paste technologies. The company prioritizes sustainability and energy efficiency in manufacturing while developing its workforce through partnerships with local universities.