-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueDesigning Through the Noise
Our experts discuss the constantly evolving world of RF design, including the many tradeoffs, material considerations, and design tips and techniques that designers and design engineers need to know to succeed in this high-frequency realm.
Learning to Speak ‘Fab’
Our expert contributors clear up many of the miscommunication problems between PCB designers and their fab and assembly stakeholders. As you will see, a little extra planning early in the design cycle can go a long way toward maintaining open lines of communication with the fab and assembly folks.
Training New Designers
Where will we find the next generation of PCB designers and design engineers? Once we locate them, how will we train and educate them? What will PCB designers of the future need to master to deal with tomorrow’s technology?
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
Using Vibration and Acceleration Analysis to Improve Reliability
August 2, 2017 | Craig Armenti, Mentor GraphicsEstimated reading time: 1 minute

Deriving the physical constraints and fatigue issues for a design prior to manufacturing is essential to reducing board failure and thereby improving product quality. In harsh environments, fatigue can be responsible for up to 20% of failures. The need to design a reliable product is, of course, not a new concept; however, it has begun to receive greater attention in recent years. Customers have come to expect reliability across the industry spectrum no matter where actual production occurs.
Companies that are known to produce reliable products are rewarded in the marketplace with increased purchases as compared to their non-reliable counterparts. Reliable products have less risk of failure, less field returns and less warranty claims, all of which contribute to higher profitability. It is a given that every product is expected to fail at some point, however premature failures can be mitigated through proper design with attention to potential issues due to vibration and acceleration.
Common Methods of Validation
Industry statistics indicate field failure rates of up to 15–20% in the first year of newly launched electronic products. Most design teams rely on physical testing to determine reliability issues. Physical vibration and acceleration testing, also known as Highly Accelerated Lifecycle Testing or HALT, provides a clear mechanism to ensure reliability of a product and identify potential failures due to environmental factors. This is accomplished by applying a much higher fatigue than the actual product will undergo, thereby forcing failures and identifying weak spots.
The process, however, is costly and destructive, potentially taking months per design to complete. Furthermore, results can vary between testing chambers, possibly concealing accuracy and functional limitations on components that could then fail in the field. With the high cost and increased time-to-market, only a few prototype designs actually go through physical vibration and acceleration testing.
To read this entire article, which appeared in the July 2017 issue of The PCB Design Magazine, click here.
Suggested Items
Cadence Unveils Millennium M2000 Supercomputer with NVIDIA Blackwell Systems
05/08/2025 | Cadence Design SystemsAt its annual flagship user event, CadenceLIVE Silicon Valley 2025, Cadence announced a major expansion of its Cadence® Millennium™ Enterprise Platform with the introduction of the new Millennium M2000 Supercomputer featuring NVIDIA Blackwell systems, which delivers AI-accelerated simulation at unprecedented speed and scale across engineering and drug design workloads.
The Right Blend: Mixed Wireless Technologies
05/08/2025 | Kirsten Zima, Siemens EDAA common trend recently is to employ as many radios as possible on a single PCB. With the increase of wireless standards and the downscaling of PCB size, it can be difficult to know what the most critical design parameters are to focus on. In this article, we’ll discuss the most important considerations to make when designing with mixed wireless technologies, such as Bluetooth, GPS, and Wi-Fi, on a single PCB. These considerations include antennas, frequencies, FCC compliance, shielding, and layout with and without transition vias.
ZESTRON Announces New Reliability and Solutions Service for Risk Assessment & Mitigation of Electronic Assemblies
05/06/2025 | ZESTRONZESTRON, the leading global provider of high-precision cleaning products, services, and training solutions, is thrilled to introduce its new Reliability and Solutions (R&S) service.
PCB East Continues to Expand
05/06/2025 | Andy Shaughnessy, Design007 MagazineIt was a perfect week for a conference and trade show in metropolitan Boston, with high temperatures in the 70s. PCB East took place at the Boxboro Regency Hotel and Conference Center April 29–May 2, with the expo on April 30. PCB East has been expanding since its relaunch a few years ago, with conference and show attendance rising each year.
Green Circuits Expands Large-Format PCBA Capabilities with Installation of JUKI Primo Screen Printer
05/05/2025 | Green CircuitsGreen Circuits, a full-service Electronics Manufacturing Services (EMS) partner to leading OEMs, proudly announces the installation of the JUKI Primo Large-Format Screen Printer, expanding its capabilities to support printed circuit board assemblies (PCBAs) up to 33.5" x 24".