-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssuePartial HDI
Our expert contributors provide a complete, detailed view of partial HDI this month. Most experienced PCB designers can start using this approach right away, but you need to know these tips, tricks and techniques first.
Silicon to Systems: From Soup to Nuts
This month, we asked our expert contributors to weigh in on silicon to systems—what it means to PCB designers and design engineers, EDA companies, and the rest of the PCB supply chain... from soup to nuts.
Cost Drivers
In this month’s issue of Design007 Magazine, our expert contributors explain the impact of cost drivers on PCB designs and the need to consider a design budget. They discuss the myriad design cycle cost adders—hidden and not so hidden—and ways to add value.
- Articles
- Columns
Search Console
- Links
- Events
||| MENU - design007 Magazine
RUSH PCB Unveils 10-Layer HDI Design and Manufacture Capabilities
May 1, 2018 | RUSH PCBEstimated reading time: 1 minute
Rush PCB Inc. now offers the design and manufacturing of multilayer HDI PCBs of 10 layers and more.
In making the announcement, CEO Akber Roy stated, “To achieve very high-density interconnection, designers at Rush PCB Inc. use what we know as Every Layer Interconnect (ELIC) technology. This is a method wherein each layer has its own copper-filled laser-drilled microvias. When stacked up, it provides the opportunity for dynamic connections between any two layers in the PCB. Not only does this offer an increased level of flexibility, but it also maximizes circuit density.”
Roy adds that RUSH designers have taken up the additional complex challenges in routing with via-in-pad (VIP) and by employing blind and buried vias. They laser-drill via holes and filled them with conductive copper paste.
“Before finalizing the design of multi-layer PCBs, our designers confirm the structure of the circuit board primarily based on the scale, physical size, and the requirements of electromagnetic compatibility (EMC)," said Roy. "Our designers use 10 layers of material, and in this stack-up design have decided that the placement of the innerlayer and the manner of distribution of different signals in these layers of the multilayer PCB. This careful planning and determination of the stack-up design beforehand save the user much time and effort in wiring and production later.”
Roy added, “Apart from very fine traces in the foil pattern, HDI requires sequential build-up (SBU) and microvias drilled with lasers. SBU technology is used to fabricate HDI boards. The HDI layers are usually built up from a traditionally manufactured double-sided core board or multilayer PCBs.”
About RUSH PCB Inc.
Rush PCB Inc., is a printed circuit design, fabrication and assembly company located in the heart of Silicon Valley. Rush PCB engineers are experts at handling small production runs and prototypes as well as full-scale production, using both manual and automated SMD assembly processes when appropriate. RUSH can execute single and double-sided placement for all SMT component types, including BGA, UBGA, QFP, QFN, PLCC, SOIC, POP, and various other small chip packages. They can efficiently handle passive chip packages as small as 0201s, and active components with a pitch of 8 mils or more. For more information, click here.
Suggested Items
Partial HDI: A Complete Solution
10/10/2024 | I-Connect007 Editorial TeamWe recently spoke with IPC instructor Kris Moyer about partial HDI, a process that’s recently been growing in popularity. Partial HDI allows designers to escape route out from tight-pitch BGAs on one layer, where a mechanically drilled plated through-hole is not an option, while avoiding the complexity and expense of sequential lamination cycles. As Kris explains, this process doesn’t add much to the cost, and it’s fairly straightforward. But there are some competing signal integrity and fabrication requirements to contend with. We asked Kris to walk us through this process.
Trouble in Your Tank: Interconnect Defect—The Three Degrees of Separation
10/01/2024 | Michael Carano -- Column: Trouble in Your TankIt has been well documented that, with a very expensive and complex printed circuit board, thermal and mechanical excursions often find weaknesses. A lack of robustness and poor process control often leads to the exploitation of those weaknesses. An interconnect defect (ICD) often goes undetected until the printed circuit board reaches the final assembly stage or undergoes multiple thermal cycles, including interconnect stress tests or thermal shock. It is impossible to rework the ICD defect. But unlike voids, if detected in time, the panels can be reprocessed.
Connect the Dots: Designing for Reality—Outer Layer Imaging
09/26/2024 | Matt Stevenson -- Column: Connect the DotsWelcome to the next step in the manufacturing process—the one that gets the chemical engineer in all of us excited. I am referring to outer layer imaging, or how we convert digital designs to physical products. On a recent episode of I-Connect007’s On the Line with… podcast, we explained how the outer layer imaging process maps the design’s unique features onto the board.
Trouble in Your Tank: Things You Can Do for Better Wet Process Control
09/11/2024 | Michael Carano -- Column: Trouble in Your TankFor 40 years, I have been involved in the printed circuit board, circuit board assembly, and semiconductor technology segments, preaching about minimizing defects and improving yields. This is especially true as technology becomes increasingly complex, and additional focus must be placed on yield improvements. Process management and wet process control must be front and center, so it’s quite interesting and timely to talk about wet process control and management for this month’s issue. This theme fits quite well with today's global events. For this industry, the technical curve has steepened dramatically in the past few years.
Atotech to Participate at KPCA Show 2024
09/03/2024 | AtotechMKS’ Atotech will participate in this year’s KPCA Show 2024 in Incheon, held at Songdo Convensia from September 4-6, 2024.
Copyright © 2024 I-Connect007 | IPC Publishing Group Inc. All rights reserved.
Log in