-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueThe Hole Truth: Via Integrity in an HDI World
From the drilled hole to registration across multiple sequential lamination cycles, to the quality of your copper plating, via reliability in an HDI world is becoming an ever-greater challenge. This month we look at “The Hole Truth,” from creating the “perfect” via to how you can assure via quality and reliability, the first time, every time.
In Pursuit of Perfection: Defect Reduction
For bare PCB board fabrication, defect reduction is a critical aspect of a company's bottom line profitability. In this issue, we examine how imaging, etching, and plating processes can provide information and insight into reducing defects and increasing yields.
Voices of the Industry
We take the pulse of the PCB industry by sharing insights from leading fabricators and suppliers in this month's issue. We've gathered their thoughts on the new U.S. administration, spending, the war in Ukraine, and their most pressing needs. It’s an eye-opening and enlightening look behind the curtain.
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
Making the Most of PCB Materials for 5G Microwave and mmWave Amps
June 13, 2018 | John Coonrod, Rogers CorporationEstimated reading time: 2 minutes

Millions of cell phones trying to connect voices and download unimaginable numbers of files worldwide point to the inevitability of fifth generation (5G) wireless communications networks. 5G is coming, and it will require the right circuit materials for many different types of high-frequency circuits, including power amplifiers (PAs). 5G represents the latest and greatest in wireless technology, and it will be challenging to design and fabricate, starting with the circuit board materials, because it will operate across many different frequencies, such as 6 GHz and below, as well as at millimeter-wave frequencies (typically 30 GHz and above). It will also combine network access from terrestrial base stations and orbiting satellites. But by careful consideration of mechanical and electrical requirements, high-frequency circuit materials can be specified that enable the design and development of 5G PAs no matter the frequency.
Ideally, a single circuit material would be a suitable starting point for PAs at all frequencies. However, amplifiers at different frequencies have different design requirements and are best supported by circuit materials with different characteristics best suited to the different frequencies. For example, insertion loss or dissipation factor can be more or less depending on the type of circuit material. Every circuit material will suffer some amount of loss, which typically increases with increasing frequency. The loss performance of a given circuit material may be acceptable within the microwave frequencies to be used in 5G networks but not within the millimeter-wave frequency range, where signal power tends to be less with increasing frequencies. The circuit material that provides the low loss needed for high PA gain and output power at microwave frequencies may not be the best choice of material for a PA at millimeter-wave frequencies.
The design requirements for a key circuit material parameter, dielectric constant (Dk), are much different for microwave frequencies, such as the 6 GHz and below used with 5G systems, than for millimeter-wave frequencies, such as 30 GHz and above, as will be used for short-range backhaul links in 5G wireless networks. Selecting an optimum circuit material for each band of frequencies requires understanding which Dk value best supports each of the two different frequency ranges. Then it is a matter of finding circuit materials that possess those Dk values along with as many as possible of the other circuit material attributes that help make a good, high-performance, high-frequency PA.
To read this entire article, which appeared in the May 2018 issue of Design007 Magazine, click here.
Suggested Items
Digital Twin Concept in Copper Electroplating Process Performance
07/11/2025 | Aga Franczak, Robrecht Belis, Elsyca N.V.PCB manufacturing involves transforming a design into a physical board while meeting specific requirements. Understanding these design specifications is crucial, as they directly impact the PCB's fabrication process, performance, and yield rate. One key design specification is copper thieving—the addition of “dummy” pads across the surface that are plated along with the features designed on the outer layers. The purpose of the process is to provide a uniform distribution of copper across the outer layers to make the plating current density and plating in the holes more uniform.
Meet the Author Podcast: Martyn Gaudion Unpacks the Secrets of High-Speed PCB Design
07/10/2025 | I-Connect007In this special Meet the Author episode of the On the Line with… podcast, Nolan Johnson sits down with Martyn Gaudion, signal integrity expert, managing director of Polar Instruments, and three-time author in I-Connect007’s popular The Printed Circuit Designer’s Guide to... series.
Showing Some Constraint: Design007 Magazine July 2025
07/10/2025 | I-Connect007 Editorial TeamA robust design constraint strategy balances dozens of electrical and manufacturing trade-offs. This month, we focus on design constraints—the requirements, challenges, and best practices for setting up the right constraint strategy.
Elementary, Mr. Watson: Rein in Your Design Constraints
07/10/2025 | John Watson -- Column: Elementary, Mr. WatsonI remember the long hours spent at the light table, carefully laying down black tape to shape each trace, cutting and aligning pads with surgical precision on sheets of Mylar. I often went home with nicks on my fingers from the X-Acto knives and bits of tape all over me. It was as much an art form as it was an engineering task—tactile and methodical, requiring the patience of a sculptor. A lot has changed in PCB design over the years.
TTCI Joins Printed Circuit Engineering Association to Strengthen Design-to-Test Collaboration and Workforce Development
07/09/2025 | The Test Connection Inc.The Test Connection Inc. (TTCI), a leading provider of electronic test and manufacturing solutions, is proud to announce its membership in the Printed Circuit Engineering Association (PCEA), further expanding the company’s efforts to support cross-functional collaboration, industry standards, and technical education in the printed circuit design and manufacturing community.