-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueIntelligent Test and Inspection
Are you ready to explore the cutting-edge advancements shaping the electronics manufacturing industry? The May 2025 issue of SMT007 Magazine is packed with insights, innovations, and expert perspectives that you won’t want to miss.
Do You Have X-ray Vision?
Has X-ray’s time finally come in electronics manufacturing? Join us in this issue of SMT007 Magazine, where we answer this question and others to bring more efficiency to your bottom line.
IPC APEX EXPO 2025: A Preview
It’s that time again. If you’re going to Anaheim for IPC APEX EXPO 2025, we’ll see you there. In the meantime, consider this issue of SMT007 Magazine to be your golden ticket to planning the show.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - smt007 Magazine
It’s Time to Retire ROSE Testing
June 27, 2018 | Joe Russeau, Precision Analytical Laboratory, and Mark Northrup, IEC ElectronicsEstimated reading time: 3 minutes

For decades now, the electronics industry has had a growing need to understand the impacts of chemical residues on PCB and PCBA reliability. Residues left from flux and other process chemistries can potentially lead to premature failure of assemblies once in the field. Understanding where such residues originate and their impact on product function is paramount to mitigating product failures due to cleanliness issues. One tool that has been used for decades to evaluate printed board and assembly cleanliness has been the resistivity of solvent extract (ROSE) test.
The ROSE test was developed in the early 1970s by the Naval Avionics Warfare Center in Indianapolis, Indiana. The early test used a squeeze bottle containing a solvent comprised of 75% 2-propanol and 25% deionized water (75/25). The surface of an assembly was rinsed with the 75/25 mixture and any material (e.g., flux) easily soluble in the mixture was dissolved and captured in a beaker. The resistivity of the captured solution was measured, and the result was expressed in terms of sodium chloride equivalents (NaCl eq.). Later versions of the test were automated and a 10.06 microgram (μg) of NaCl eq./in2 (1.56 μg of NaCl eq./cm2) limit was eventually ascribed to the test. That limit became enshrined in various military specifications, such as MIL-P-28809 and WS-6536 and eventually became the industry pass/fail standard. The limit persists today and is used across a wide base of material sets, from bare boards to assemblies to components.
Over the last two to three years, there has been considerable discussion within various IPC committees about the role of the ROSE test in today’s assembly environment. The transition from predominantly water wash processes to “no clean” has meant the advent of very different flux compositions. The question has been posed—on numerous occasions, we might add—as to whether the ROSE test is still a viable option for evaluating PCB and PCBA cleanliness. There have essentially been two camps of thought on the subject: those who want to continue using the test and re-invent it as a process control tool and those that think the test has run its useful course.
To update the test, IPC’s J-STD-001 committee commissioned a subgroup of users and subject matter experts to determine if there was a best-practices use that would bolster its continued application. Two conclusions were reached by that subgroup. First, the ROSE test should no longer be referred to as a cleanliness test, but as a process control tool. This was a reasonable conclusion since ROSE was never meant for cleanliness as industry had defined it. Second, users of the test must provide objective evidence, aside from just ROSE alone, to show that their manufacturing process is in control. More information about what the subgroup defined as “objective” evidence can be found in IPC-WP-019.
The statement made in the title to this article is where we want to focus most of our discussion. We are in the camp that believes the ROSE test provides little value for evaluating today’s assembly products and here’s why. The first significant concern with the validity of the ROSE test is the solvent. Back when the test was developed the predominant flux being used was heavily comprised of rosin (>30%). The 75/25 mixture was a very effective solvent for breaking down that flux and bringing it into solution. This is an important factor to consider because to accurately measure the amount of residual flux on a PCBA, you must first have a solvent that can dissolve it into solution. This is one of the major problems with the ROSE test today.
Why is the solvent an important consideration? Typically, four questions that are asked when performing cleanliness testing of assemblies. The questions are as follows:
1. What types of residues are on the surface of the assembly?
2. What are the concentrations of those residues?
3. Do those residues/concentrations pose any risk to product performance/function?
4. Where are the residues originating?
To have any hope of answering these questions, we need to consider a testing platform with two very specific attributes: selectivity and sensitivity. With the advances in board design, product miniaturization, process improvement and the myriad of chemicals used in assembly production today, a bulk-solvent measurement is not adequate for determining if there are any hidden residue traps.
To read the full version of this article, which appeared in the in the May 2018 issue of SMT007 Magazine, click here.
Suggested Items
Hunting for Clues: Feng Xue Solving Circuit Board 'Crimes' With AOI Standard
05/08/2025 | Linda Stepanich, IPCWhen residents in sleepy English villages needed a top-tier detective to solve a murder, they called on Belgian super-sleuth Hercule Poirot, author Agatha Christie’s fictional detective famous for using his “little grey cells” to solve crimes. In the same way, IPC standards development committees, when creating a standard to detect defects in circuit boards using Automated Optical Inspection (AOI), call on IPC A-Team, Hercule.
IPC Strengthens Global Focus with Promotion of Sanjay Huprikar to Chief Global Officer
05/08/2025 | IPCIPC, the global electronics association, announces the promotion of Sanjay Huprikar to chief global officer. This newly created position reflects the association’s forward-looking strategy and industry needs to strengthen the electronics supply chain.
Navigating Global Manufacturing in an Era of Uncertainty
05/07/2025 | Philip Stoten, ScoopThe EMS industry faces unprecedented challenges as global trade tensions rise and tariff announcements create market uncertainty. In an overview of IPC Europe’s podcast, MADE IN EUROPE, industry experts from GPV and Zollner examine how these developments impact our businesses and customers, and what strategies will prevail in this new landscape.
Nick Koop Launches IPC Flex Design Class
05/06/2025 | Andy Shaughnessy, Design007 MagazineNick Koop is director of flex technology for TTM Technologies, and he’s been a staple of IPC’s flex committees for decades. He’s also a longtime flex design instructor, and he’s about to debut a new IPC class, Flex and Rigid-Flex Design for Manufacturability, which will run May 12–21. In this interview, Nick tells us about this new class and what attendees can expect to learn.
The Government Circuit: Trump’s Trade War Disrupts the Electronics Ecosystem
05/06/2025 | Chris Mitchell -- Column: The Government CircuitThere is certainly no shortage of work to be done in the IPC Government Relations department, as the U.S. waged a tariff campaign on practically every industrial country in the world and several countries embarked on high-tech initiatives with a mix of approaches to the crucial foundations of electronics manufacturing. Indeed, the breadth and speed of U.S. President Donald Trump’s tariff campaign continues to be a serious challenge for our industry.