-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueRules of Thumb
This month, we delve into rules of thumb—which ones work, which ones should be avoided. Rules of thumb are everywhere, but there may be hundreds of rules of thumb for PCB design. How do we separate the wheat from the chaff, so to speak?
Partial HDI
Our expert contributors provide a complete, detailed view of partial HDI this month. Most experienced PCB designers can start using this approach right away, but you need to know these tips, tricks and techniques first.
Silicon to Systems: From Soup to Nuts
This month, we asked our expert contributors to weigh in on silicon to systems—what it means to PCB designers and design engineers, EDA companies, and the rest of the PCB supply chain... from soup to nuts.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
Advanced Stackup Planning with Impedance, Delay and Loss Validation
August 2, 2018 | Yuriy Shlepnev, SimberianEstimated reading time: 2 minutes
A typical PCB design usually starts with the material selection and stackup definition—the stackup planning or design exploration stage. How reliable are the data provided by the material vendors and PCB manufacturers? Can we use these data to predict trace width and spacing for the target trace impedance or to calculate delays or evaluate the loss budget?
PCB routing is usually done with these preliminary data. The actual stackup may be further adjusted by the PCB manufacturer together with the trace widths and spacing, to have the target impedances. This is the typical impedance-controlled process that is well established and usually produces an acceptable outcome.
But what about the losses? Can we use preliminary data to evaluate the losses and loss-related compliance metrics? Or can we just specify the target losses and rely on the manufacturers, as is done with the impedance? Let’s try to answer these questions. An EvR-1 validation board is used here as an example with the preliminary and final data—all data for this board are provided by Marko Marin from Infinera. This board was featured in our award-winning “Expectation vs. Reality” paper. We will use Simbeor software as the stackup exploration tool to evaluate the accuracy of the characteristic impedance, delay and losses. Simbeor is selected for the stackup exploration because it is systematically validated with the measurements up to 50 GHz.
Stackup planning begins with selecting a PCB manufacturer and possible materials and defining the stackup structure. In our case, the validation board has 20 layers with 8 layers assigned for the high-speed signals as shown in Figure 1. Low-loss Panasonic Megtron6 laminate is selected to rout the high-speed interconnects. The target impedance has been specified for the PCB manufacturer, and the manufacturer has provided expected stackup structure, trace widths, and spacing adjustments to fulfill the target impedances. This is the usual case for a production board.
According to the manufacturer, the expected impedance variations should be within 8%. That is too large to expect excellent correlation up to 30 GHz for 28 Gbps NRZ links, but it may be acceptable. The board manufacturer provided stackup geometry as shown in Figure 1 on the left side, and corresponding stackup entered for the pre-layout analysis into Simbeor software is shown on the right side. Megtron6 specs provide dielectric constant and loss tangent at multiple frequencies—just one frequency data can be used to define causal wideband Debye model. The values for Dk in the Figure 1 are slightly different from the Megtron6 specs and are provided by the PCB manufacturer based upon their experience with this material.
To read this entire article, which appeared in the July 2018 issue of Design007 Magazine, click here.
Suggested Items
Trouble in Your Tank: Materials for PWB Fabrication—Drillability and Metallization
07/16/2024 | Michael Carano -- Column: Trouble in Your TankLaminate materials are the building blocks on which printed circuit boards are manufactured. Circuit board designers rely on the critical electrical properties of the materials to design the interconnects, and with the drive toward IoT (internet of things), autonomous driving, and virtual and augmented reality, material properties take on a very high level of importance.
Don’t Overconstrain Your Board Materials
07/02/2024 | I-Connect007 Editorial TeamWhen we started planning May’s issue, which centers on the use of traditional laminates in certain high-frequency PCBs, we knew we had to interview Kris Moyer and Ed Kelley together. Kris teaches advanced PCB design classes for IPC, and Ed is the former CTO of Isola and founder of Four Peaks Innovation. What ensued was a wide-ranging discussion on the evolution of “standard” PCB laminates and the recent trend by some OEMs to use these materials in high-frequency and even RF boards.
Underconstraining Your Materials? Leave It to the Experts
05/30/2024 | I-Connect007 Editorial TeamWith traditional laminates now sporting improved resin systems, some OEMs are choosing various flavors of FR-4 instead of high-speed laminates for their high-speed designs—even RF applications. Avoiding overconstraining your materials in high-speed products can lead to considerable cost savings, not to mention a more streamlined trip through fabrication.
The Shaughnessy Report: Unlock Your High-speed Material Constraints
05/15/2024 | Andy Shaughnessy -- Column: The Shaughnessy ReportThe world of PCB materials used to be a fairly simple one. It was divided into two groups: the “traditional” laminates, often called FR-4, and the high-speed laminates developed especially for high-speed PCBs. These were two worlds that usually didn’t collide. But then traditional laminates started getting better, and high-speed designers and design engineers took notice and started to reconsider what FR-4 could be used for.
Breaking High-speed Material Constraints: Design007 Magazine — May 2024
05/14/2024 | I-Connect007 Editorial TeamDo you need specialty materials for your high-speed designs? Maybe not. Improvements in resins mean designers of high-speed boards can sometimes use traditional laminate systems instead of high-speed materials, saving time and money while streamlining the fab process. In the May 2024 issue of Design007 Magazine, our contributors explain how to avoid overconstraining your materials when working with high-speed boards.