-
-
News
News Highlights
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueProduction Software Integration
EMS companies need advanced software systems to thrive and compete. But these systems require significant effort to integrate and deploy. What is the reality, and how can we make it easier for everyone?
Spotlight on India
We invite you on a virtual tour of India’s thriving ecosystem, guided by the Global Electronics Association’s India office staff, who share their insights into the region’s growth and opportunities.
Supply Chain Strategies
A successful brand is built on strong customer relationships—anchored by a well-orchestrated supply chain at its core. This month, we look at how managing your supply chain directly influences customer perception.
- Articles
- Columns
- Links
- Media kit
||| MENU - smt007 Magazine
Evaluating the Impact of Powder Size and Stencils on Solder Paste Transfer Efficiency
July 31, 2018 | T. O’Neill, C. Tafoya, and G. Ramirez, AIM Metals and AlloysEstimated reading time: 9 minutes
The solder paste tested included Types 4 and 5 in a modern, no-clean flux medium. The pastes were blended, shipped and stored under recommended conditions. The same metal percentage was used for the T4 (88.5%) and T5 (88.3%) as in earlier tests; however, different lots of solder powder and flux medium were used in this test.
Experimental Design
Input variables in the experiment included:
• Paste Type (4, 5)
• Stencil nanocoating (Y/N)
• Foil mounting tension (std/high)
• Pause time between print tests (0, 30, 60 and 90 minutes)
• PCB pad size (6–15mil)
• PCB pad shape (circular, square, modified square with rounded corners)
• PCB pad definition (NSMD, SMD)
Output variables included:
• Deposit volume
• Deposit height
• Transfer efficiency (% volume). TE is based on theoretical aperture sizes, not measured aperture sizes. All the stencils were cut from the same material on the same cutter by the same operator, so it is assumed that any systemic error is applied equally to all stencils. Actual aperture sizes were not measured
Statistics calculated from the output readings included:
• Means (or averages)
• Standard deviations
• Coefficients of variation (CV, or the standard deviation divided by the mean and expressed as a percentage). CV is preferred over Cpk when comparing different SPI datasets because it normalizes the variation with respect to the mean without the influence of control limits
• Using generally accepted industry practices, the acceptability criterion was TE at least 80% of theoretical aperture volume and a CV of less than 10%
Stencil under wipes were performed before each set of five prints, but not between prints. SPI readings were taken immediately after each print. The full runs that included 0, 30-, 60- and 90-minute pauses took approximately four hours from start to finish.
The tests were nested as follows:
Time 0
1. Install stencil and squeegees
2. Stir solder paste and apply to stencil
3. Print 5 boards
4. Start timer for 30 minutes
5. Remove stencil and squeegees, leave paste on stencil
At 30-minute mark on timer run WVD wipe
1. Print 5 boards
2. Start timer for 60 minutes
3. Remove stencil and squeegees, install stencil and squeegees
4. At 30-minute mark on timer, run WVD
5. Print 5 boards
At 60-minute mark run WVD wipe
1. Print 5 boards
2. Start timer for 90 minutes
3. Remove stencil and squeegees, install “A” stencil and squeegees
4. At 60-minute mark on timer run WVD wipe
5. Print 5 boards
At 90-minute mark on timer "F" run WVD wipe
1. Print 5 boards
2. Start timer for 120 minutes
3. Remove stencil and squeegees, install stencil and squeegees
4. At 90-minute mark on timer, run WVD wipe
5. Print 5 boards
6. Remove stencil and squeegees
Table 2: Data management spreadsheet.
Table 2 shows the data management worksheet that indicates variable, run order, board labeling and SPI file tracking information.
Results and Discussion
There is myriad facets to consider when analyzing the collected data. To streamline the analysis:
1. data has been compartmentalized by component type or padstack
2. only best- and worst-case scenarios are reviewed
3. paste transfer quality is interpreted with respect to the main input variables of nanocoating, paste particle size, and foil tensioning
BGAs
0.4 and 0.5 mm BGA apertures are the first features considered, as these devices are becoming common to the industry and are a frequent print challenge for mainstream PBC assemblers. The test vehicle’s area ratios are 0.71 for 0.5 mm BGA and 0.62 for 0.4 mm BGA. These are at either side of the threshold of recommended guidelines of 0.66 AR, which has historically been cited as the lowest AR that should be considered when printing T3 solder paste. T3 was not included in this test because T4 is quickly becoming the industry standard it is usually readily available. T5 was also tested, as it is often requested by assemblers who perceive smaller powder size as a fast and easy improvement to a fine pitch printing process. T5 paste indeed brings some print advantages, but also carries with it some inherent disadvantages. Procuring T5 paste can present supply chain challenges and it can increase variability in paste print and reflow performance over time due to the higher surface area: volume ratio.
Figures 3 and 4 shows the Transfer Efficiency (TE), or the percentage of theoretical aperture volume that was deposited and the associated Coefficients of Variation (CVs) for the 0.5 mm and 0.4 mm BGAs. Each data point on the 0.5 mm chart represents the average of 3780 deposit readings—84 I/Os per device, 3 devices per board, three boards per panel and five panels per test. Each data point on the 0.4 mm BGA chart represents 16,200 measurements, as the same number of devices have 360 I/Os each. This quantity of data generates high confidence in the results.
Page 2 of 3
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Indium to Showcase High-Reliability Solder and Flux-Cored Wire Solutions at SMTA International
10/09/2025 | Indium CorporationAs one of the leading materials providers in the electronics industry, Indium Corporation® will feature its innovative, high-reliability solder and flux-cored wire products at SMTA International (SMTAI), to be held October 19-23 in Rosemont, Illinois.
‘Create your Connections’ – Rehm at productronica 2025 in Munich
10/08/2025 | Rehm Thermal SystemsThe electronics industry is undergoing dynamic transformation: smart production lines, sustainability, artificial intelligence, and sensor technologies dominate current discussions.
Amplifying Innovation: New Podcast Series Spotlights Electronics Industry Leaders
10/08/2025 | I-Connect007In the debut episode, “Building Reliability: KOKI’s Approach to Solder Joint Challenges,” host Marcy LaRont speaks with Shantanu Joshi, Head of Customer Solutions and Operational Excellence at KOKI Solder America. They explore how advanced materials, such as crack-free fluxes and zero-flux-residue solder pastes, are addressing issues like voiding, heat dissipation, and solder joint reliability in demanding applications, where failure can result in costly repairs or even catastrophic loss.
SASinno Americas Introduces the Ultra Series
10/07/2025 | SASinno AmericasSASinno Americas has introduced the new Ultra Series, the latest generation of offline selective soldering systems. Available in two models—the Ultra-i1 and Ultra-i2—the new series is designed to meet the needs of manufacturers running small to medium batch sizes, multiple product types, and frequent line changes, while maintaining exceptional precision and process control.
Elmotec by E-Tronix to Showcase SolderSmart® TOP Robotic Soldering at The Assembly Show 2025
10/06/2025 | ELMOTECE-tronix, a Stromberg Company, is pleased to announce its participation at The Assembly Show 2025 in Rosemont, IL, October 21st through 23rd. Exhibiting under Elmotec by E-Tronix, Booth #448, the team will highlight the SolderSmart® TOP robotic soldering system, featuring live demonstrations throughout the show.