-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueSpotlight on India
We invite you on a virtual tour of India’s thriving ecosystem, guided by the Global Electronics Association’s India office staff, who share their insights into the region’s growth and opportunities.
Supply Chain Strategies
A successful brand is built on strong customer relationships—anchored by a well-orchestrated supply chain at its core. This month, we look at how managing your supply chain directly influences customer perception.
What's Your Sweet Spot?
Are you in a niche that’s growing or shrinking? Is it time to reassess and refocus? We spotlight companies thriving by redefining or reinforcing their niche. What are their insights?
- Articles
- Columns
- Links
- Media kit
||| MENU - smt007 Magazine
A New Standard for Standards – From Data to Information
September 7, 2018 | Dr. Glen Thomas, Creative ElectronEstimated reading time: 3 minutes

The main challenge we have today with our manufacturing standards is that they are deterministic. For example, for X-ray inspection of BGAs, the standard is a 30% maximum void per ball. This standard determines if a BGA assembly passes or fails. Now, there's nothing to say that a ball with 29% void could not fail and there's also nothing to say that a 31% void in a single ball could not work. It's understandable that for a manufacturing process you need to set some clear parameters to define what's a pass and what's a fail, otherwise it becomes very complicated to set quality standards for a manufacturing process.
Now, it's important to keep in mind that these deterministic thresholds, for example 30% maximum void per ball on BGAs, were developed in a time when collecting data from instruments in a manufacturing line was very costly. And further, contextualization of that data, meaning the process to input all the data that's collected from the individual instruments and inserting that into context, was even more expensive. In some cases, it was technically infeasible.
So, what has changed with Industry 4.0 and other initiatives from equipment manufacturers? The answer is simple: data is more available. Individual instruments are already collecting a lot of data. But that data has not been used or contextualized. Data is getting cheaper. However, data out of context has another name, it’s called noise. Contextualized data, on the other hand, is called information.
At Creative Electron, we're proposing a new perspective on setting pass and fail thresholds in the manufacturing line, based on actual performance and test data, rather than an arbitrarily set number. Instead of setting deterministic numbers, like the 30% void, we would collect data and determine what's a pass and what's a failure. Thus, scrap is minimized, since you only rework or scrap the parts you really need to reject because you know they're likely to fail. What’s more, you gain a greater understanding of where to set the pass or fail parameters.
This, in a way, is what is being done now for QFNs. There's no clear directive for voiding on QFN. So, when asked by our customers, we advise they follow the guidelines of the component manufacturer, based on what works for that specific component and application.
How Does this New Solution Work?
Take the example of a new board with a BGA. With the normal NPI (New Product Introduction) process, you would assemble several boards and would X-ray the BGAs and measure the voids on each one of the balls and check if you are below the 25% or 30% void in each of the balls, depending on the class of product that you are developing.
We propose still collecting the data, but instead of using a simple pass or fail threshold, we suggest testing and using the test data to determine the threshold. So, we collect more and more data to set a dynamic threshold that can move up or down depending on the results we have from real tests. This way we use the actual test data that's available to fine tune our manufacturing thresholds.
There are several test parameters we can use to determine pass or fail in high volume. Going back to our QFN example, if there's a temperature band that the component is supposed to work at, we can place the component and measure with an X-ray system how much voiding we have on the QFM, and using an infrared or laser thermometer, we can determine if the temperature guidance is being followed.
Smart factory solutions are not just about collecting data, they are about using that data intelligently to make faster and better decisions. We think this is a great example of using the data derived throughout the line to create a more efficient and more effective use of X-ray and rework resources.
About Dr. Glen Thomas
Dr. Glen Thomas is a proven veteran in the inspection market with over two decades of experience developing and marketing X-ray systems. Dr. Thomas leads Creative Electron’s lead generation and branding strategy. He also manages the company’s relationship with our domestic and international sales channels. He has been instrumental in helping the company create the best X-ray inspection systems in the world by providing its customers with unrivaled value. Dr. Thomas has held executive leadership positions and was instrument at the growth of companies like Faxitron, Micro Focus Imaging, Radsource Technologies, X-Ray Imaging Solutions, and Lixi.
Dr. Thomas holds a BS in Electrical Engineering and a PhD from the University of Wisconsin in Madison.
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
MEMS & Imaging Sensors Summit to Spotlight Sensing Revolution for Europe’s Leadership
09/11/2025 | SEMIIndustry experts will gather November 19-20 at the SEMI MEMS & Imaging Sensors Summit 2025 to explore the latest breakthroughs in AI-driven MEMS and imaging optimization, AR/VR technologies, and advanced sensor solutions for critical defence applications.
Direct Imaging System Market Size to Hit $4.30B by 2032, Driven by Increasing Demand for High-Precision PCB Manufacturing
09/11/2025 | Globe NewswireAccording to the SNS Insider, “The Direct Imaging System Market size was valued at $2.21 Billion in 2024 and is projected to reach $4.30 Billion by 2032, growing at a CAGR of 8.68% during 2025-2032.”
I-Connect007’s Editor’s Choice: Five Must-Reads for the Week
07/04/2025 | Marcy LaRont, I-Connect007For our industry, we have seen several bullish market announcements over the past few weeks, including one this week by IDC on the massive growth in the global server market. We’re also closely watching global trade and nearshoring. One good example of successful nearshoring is Rehm Thermal Systems, which celebrates its 10th anniversary in Mexico and the official opening of its new building in Guadalajara.
Driving Innovation: Direct Imaging vs. Conventional Exposure
07/01/2025 | Simon Khesin -- Column: Driving InnovationMy first camera used Kodak film. I even experimented with developing photos in the bathroom, though I usually dropped the film off at a Kodak center and received the prints two weeks later, only to discover that some images were out of focus or poorly framed. Today, every smartphone contains a high-quality camera capable of producing stunning images instantly.
United Electronics Corporation Advances Manufacturing Capabilities with Schmoll MDI-ST Imaging Equipment
06/24/2025 | United Electronics CorporationUnited Electronics Corporation has successfully installed the advanced Schmoll MDI-ST (XL) imaging equipment at their advanced printed circuit board facility. This significant technology investment represents a continued commitment to delivering superior products and maintaining their position as an industry leader in precision PCB manufacturing.