-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueIntelligent Test and Inspection
Are you ready to explore the cutting-edge advancements shaping the electronics manufacturing industry? The May 2025 issue of SMT007 Magazine is packed with insights, innovations, and expert perspectives that you won’t want to miss.
Do You Have X-ray Vision?
Has X-ray’s time finally come in electronics manufacturing? Join us in this issue of SMT007 Magazine, where we answer this question and others to bring more efficiency to your bottom line.
IPC APEX EXPO 2025: A Preview
It’s that time again. If you’re going to Anaheim for IPC APEX EXPO 2025, we’ll see you there. In the meantime, consider this issue of SMT007 Magazine to be your golden ticket to planning the show.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - smt007 Magazine
A New Standard for Standards – From Data to Information
September 7, 2018 | Dr. Glen Thomas, Creative ElectronEstimated reading time: 3 minutes

The main challenge we have today with our manufacturing standards is that they are deterministic. For example, for X-ray inspection of BGAs, the standard is a 30% maximum void per ball. This standard determines if a BGA assembly passes or fails. Now, there's nothing to say that a ball with 29% void could not fail and there's also nothing to say that a 31% void in a single ball could not work. It's understandable that for a manufacturing process you need to set some clear parameters to define what's a pass and what's a fail, otherwise it becomes very complicated to set quality standards for a manufacturing process.
Now, it's important to keep in mind that these deterministic thresholds, for example 30% maximum void per ball on BGAs, were developed in a time when collecting data from instruments in a manufacturing line was very costly. And further, contextualization of that data, meaning the process to input all the data that's collected from the individual instruments and inserting that into context, was even more expensive. In some cases, it was technically infeasible.
So, what has changed with Industry 4.0 and other initiatives from equipment manufacturers? The answer is simple: data is more available. Individual instruments are already collecting a lot of data. But that data has not been used or contextualized. Data is getting cheaper. However, data out of context has another name, it’s called noise. Contextualized data, on the other hand, is called information.
At Creative Electron, we're proposing a new perspective on setting pass and fail thresholds in the manufacturing line, based on actual performance and test data, rather than an arbitrarily set number. Instead of setting deterministic numbers, like the 30% void, we would collect data and determine what's a pass and what's a failure. Thus, scrap is minimized, since you only rework or scrap the parts you really need to reject because you know they're likely to fail. What’s more, you gain a greater understanding of where to set the pass or fail parameters.
This, in a way, is what is being done now for QFNs. There's no clear directive for voiding on QFN. So, when asked by our customers, we advise they follow the guidelines of the component manufacturer, based on what works for that specific component and application.
How Does this New Solution Work?
Take the example of a new board with a BGA. With the normal NPI (New Product Introduction) process, you would assemble several boards and would X-ray the BGAs and measure the voids on each one of the balls and check if you are below the 25% or 30% void in each of the balls, depending on the class of product that you are developing.
We propose still collecting the data, but instead of using a simple pass or fail threshold, we suggest testing and using the test data to determine the threshold. So, we collect more and more data to set a dynamic threshold that can move up or down depending on the results we have from real tests. This way we use the actual test data that's available to fine tune our manufacturing thresholds.
There are several test parameters we can use to determine pass or fail in high volume. Going back to our QFN example, if there's a temperature band that the component is supposed to work at, we can place the component and measure with an X-ray system how much voiding we have on the QFM, and using an infrared or laser thermometer, we can determine if the temperature guidance is being followed.
Smart factory solutions are not just about collecting data, they are about using that data intelligently to make faster and better decisions. We think this is a great example of using the data derived throughout the line to create a more efficient and more effective use of X-ray and rework resources.
About Dr. Glen Thomas
Dr. Glen Thomas is a proven veteran in the inspection market with over two decades of experience developing and marketing X-ray systems. Dr. Thomas leads Creative Electron’s lead generation and branding strategy. He also manages the company’s relationship with our domestic and international sales channels. He has been instrumental in helping the company create the best X-ray inspection systems in the world by providing its customers with unrivaled value. Dr. Thomas has held executive leadership positions and was instrument at the growth of companies like Faxitron, Micro Focus Imaging, Radsource Technologies, X-Ray Imaging Solutions, and Lixi.
Dr. Thomas holds a BS in Electrical Engineering and a PhD from the University of Wisconsin in Madison.
Suggested Items
NXP Unveils Third-Generation Imaging Radar Processors for Level 2+ to 4 Autonomous Driving
05/09/2025 | NXP SemiconductorNXP Semiconductors N.V. unveiled its new S32R47 imaging radar processors in 16 nm FinFET technology, building on NXP’s proven expertise in the imaging radar space.
SEMICON Europa 2025 Call for Abstracts Opens for Advanced Packaging Conference and MEMS & Imaging Summit
05/05/2025 | SEMISEMI Europe announced the opening of the call for abstracts for SEMICON Europa 2025, to be held November 18-21 at Messe München in Munich, Germany. Selected speakers will share their expertise at the Advanced Packaging Conference (APC), MEMS & Imaging Sensors Summit, and during presentations on the show floor.
Summit Interconnect Hollister Elevates PCB Prototyping with New TiTAN Direct Imaging System from Technica USA
05/01/2025 | Summit Interconnect, Inc.Summit Interconnect’s Hollister facility has recently enhanced its quick-turn PCB prototyping capabilities by installing the TiTAN PSR-H Direct Imaging (DI) system.
New High Power 3D AXI for Power Electronics from Test Research, Inc.
04/17/2025 | TRITest Research, Inc. (TRI), a leading provider of Test and Inspection solutions for the electronics manufacturing industry, proudly announces the launch of the 3D AXI TR7600HP system. Designed for power semiconductor inspection, the TR7600HP enhances accuracy and efficiency in detecting defects in components such as IGBTs, MOSFETs, SiC inverters, and Paladin Connectors.
Real Time with... IPC APEX EXPO 2025: MivaTek is Revolutionizing Circuit Board Manufacturing with DART Technology
04/02/2025 | Real Time with...IPC APEX EXPOBrendan Hogan from MivaTek Global discusses the company's focus on direct imaging for circuit boards and semiconductors. MivaTek is introducing DART technology for dynamic feature size adjustments. This technology enhances precision, improving registration and throughput.