-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueSignal Integrity
If you don’t have signal integrity problems now, you will eventually. This month, our expert contributors share a variety of SI techniques that can help designers avoid ground bounce, crosstalk, parasitic issues, and much more.
Proper Floor Planning
Floor planning decisions can make or break performance, manufacturability, and timelines. This month’s contributors weigh in with their best practices for proper floor planning and specific strategies to get it right.
Showing Some Constraint
A strong design constraint strategy carefully balances a wide range of electrical and manufacturing trade-offs. This month, we explore the key requirements, common challenges, and best practices behind building an effective constraint strategy.
- Articles
- Columns
- Links
- Media kit
||| MENU - design007 Magazine
First 2D Material Performs as Both Topological Insulator and Superconductor
November 1, 2018 | MITEstimated reading time: 6 minutes

A transistor based on the 2-D material tungsten ditelluride (WTe2) sandwiched between boron nitride can switch between two different electronic states — one that conducts current only along its edges, making it a topological insulator, and one that conducts current with no resistance, making it a superconductor — researchers at MIT and colleagues from four other institutions have demonstrated.
Image Caption: In two-dimensional tungsten ditelluride, two different states of matter — topological insulator and superconductor — can be chosen at will, MIT researchers discovered. Graphic: Sanfeng Wu
Using four-probe measurements, a common quantum electronic transport technique to measure the electronic behavior of materials, the researchers plotted the current carrying capacity and resistance characteristics of the two-dimensional tungsten ditelluride transistor and confirmed their findings across a range of applied voltages and external magnetic fields at extremely low temperatures.
“This is the first time that the exact same material can be tuned either to a topological insulator or to a superconductor,” says Pablo Jarillo-Herrero, the Cecil and Ida Green Professor of Physics at MIT. “We can do this by regular electric field effect using regular, standard dielectrics, so basically the same type of technology you use in standard semiconductor electronics.”
New Class of Materials
“This is the first of a new class of materials — topological insulators that can be tuned electrically into superconductors — which opens many possibilities which before there were significant obstacles to realize,” Jarillo-Herrero says. “Having one material where you can do this seamlessly within the same material to transition between this topological insulator and superconductor is something which is potentially very attractive.”
Tungsten ditelluride, which is one of the transition metal dichalcogenide materials, is classified as a semimetal and conducts electricity like metals in bulk form. The new findings detail that in a single-layer crystal form, at temperatures from less than 1 kelvin to liquid nitrogen range (-320.4 degrees Fahrenheit), tungsten ditelluride hosts three distinct phases: topologically insulating, superconducting, and metallic. An applied voltage drives the transition between these phases, which vary with temperature and electron concentration. In superconducting materials, electrons flow without resistance generating no heat.
The new findings have been published online in the journal Science. Valla Fatemi PhD '18, who is now a postdoc at Yale, and postdoc Sanfeng Wu, who is a Pappalardo Fellow at MIT, are co-first authors of the paper with senior author Jarillo-Herrero. The co-authors are MIT graduate student Yuan Cao; Landry Bretheau PhD '18 of the École Polytechnique in France; Quinn D. Gibson of the University of Liverpool in the UK; Kenji Watanabe and Takashi Taniguchi of the National Institute for Materials Science in Japan; and Robert J. Cava, a professor of chemistry at Princeton University.
Like a Quantum Wire
The new work builds on a report earlier this year by the researchers demonstrating the quantum spin Hall effect (QSH), which is the signature physics phenomenon underlying two-dimensional topological insulators, in the same single layer tungsten ditelluride material. This edge current is governed by the spin of the electrons rather than by their charge, and electrons of opposite spin move in opposite directions. This topological property is always present in the material at cold temperatures.
This quantum spin Hall effect persisted up to a temperature of about 100 kelvins (-279.67 degrees F). “So it’s the highest temperature 2-D topological insulator so far,” says postdoc Sanfeng Wu, who also was a first author of the earlier paper. “It’s very important for an interesting quantum state like this to survive at high temperatures for use for applications.”
This behavior, in which the edges of tungsten ditelluride material act like a quantum wire, was predicted in 2014 in a theoretical paper by associate professor of physics Liang Fu and Ju Li, a professor of nuclear science and engineering and materials science and engineering. Materials with these qualities are sought for spintronic and quantum computing devices.
Although the topological insulating phenomenon was observed at up to 100 kelvins, the superconducting behavior in the new work occurred at a much lower temperature of about 1K.
This material has the advantage of entering the superconducting state with one of the lowest densities of electrons for any 2-D superconductor. “That means that that small carrier density that is needed to make it a superconductor is one that you can induce with normal dielectrics, with regular dielectrics, and using a small electric field,” Jarillo-Herrero explains.
Addressing the findings of topological insulating behavior in 2-D tungsten telluride in the first paper, and the findings of superconductivity in the second, Wu says, “These are twin papers, each of them is beautiful and put together their combination can be very powerful.” Wu suggests that the findings point the way for investigation of 2-D topological materials and could lead the way to a new material basis for topological quantum computers.
The tungsten ditelluride crystals were grown at Princeton University, while the boron nitride crystals were grown at the National Institute for Materials Science in Japan. The MIT team built the experimental devices, carried out the electronic transport measurements at ultra-cold temperatures, and analyzed the data at the Institute.
Page 1 of 2
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
I-Connect007 Launches Advanced Electronics Packaging Digest
09/15/2025 | I-Connect007I-Connect007 is pleased to announce the launch of Advanced Electronics Packaging Digest (AEPD), a new monthly digital newsletter dedicated to one of the most critical and rapidly evolving areas of electronics manufacturing: advanced packaging at the interconnect level.
Panasonic Industry will Double the Production Capacity of MEGTRON Multi-layer Circuit Board Materials Over the Next Five Years
09/15/2025 | Panasonic Industry Co., Ltd.Panasonic Industry Co., Ltd., a Panasonic Group company, announced plans for a major expansion of its global production capacity for MEGTRON multi-layer circuit board materials today. The company plans to double its production over the next five years to meet growing demand in the AI server and ICT infrastructure markets.
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Fresh PCB Concepts: Designing for Success at the Rigid-flex Transition Area
08/28/2025 | Team NCAB -- Column: Fresh PCB ConceptsRigid-flex PCBs come in all shapes and sizes. Manufacturers typically use fire-retardant, grade 4 (FR-4) materials in the rigid section and flexible polyimide materials in the flex region. Because of the small size, some rigid-flex PCBs, like those for hearing aid devices, are among the most challenging to manufacture. However, regardless of its size, we should not neglect the transition area between the rigid and flexible material.
Global Sourcing Spotlight: How to Evaluate Supplier Capabilities Worldwide
08/20/2025 | Bob Duke -- Column: Global Sourcing SpotlightIn global sourcing, the difference between a competitive edge and a catastrophic disruption often comes down to how well you vet your suppliers. Sourcing advanced PCBs, precision components, or materials for complex assemblies demands diligence, skepticism, and more than a little time on airplanes. Here’s how to do your due diligence when evaluating international suppliers and why cutting corners can cost you more than money.