-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueSpotlight on India
We invite you on a virtual tour of India’s thriving ecosystem, guided by the Global Electronics Association’s India office staff, who share their insights into the region’s growth and opportunities.
Supply Chain Strategies
A successful brand is built on strong customer relationships—anchored by a well-orchestrated supply chain at its core. This month, we look at how managing your supply chain directly influences customer perception.
What's Your Sweet Spot?
Are you in a niche that’s growing or shrinking? Is it time to reassess and refocus? We spotlight companies thriving by redefining or reinforcing their niche. What are their insights?
- Articles
- Columns
- Links
- Media kit
||| MENU - smt007 Magazine
How to Avoid Common Wave Soldering Issues
November 13, 2018 | Neil Blundell, Blundell Production EquipmentEstimated reading time: 3 minutes

Wave soldering involves using waves of molten solder that act as glue to attach electrical components such as resistors, capacitors, and LED lights on the PCB. During this process, the electrical components are placed on the PCB, which is subsequently passed across a pumped wave of solder.
To prevent the solder from bridging the connections, a protective coating must be applied. The pouring solder wets the exposed metallic areas of the board and creates a reliable connection between the mechanical and electric components. While this process is expedient and efficient in producing high-quality products, it sometimes experiences glitches that can be prevented or corrected. Our posting explores some of the main issues and how to remedy them.
Pin and Blow Holes
These two types of holes occur when the gas bursts during the soldering process. They are either caused by a single blast or a continuous escape of gas. Blow and pin holes are basically the same, but some engineers use the two terms to distinguish the size of the problem. This issue is corrected by improving the quality of the board with a 25 µm of copper in the hole. It can also be eliminated through baking the board to remove excess moisture, but this solution does not address the root cause of the problem.
Solder Shorts on PCBs
Due to the ever-decreasing component pitches, the occurrence of solder shorts is on the rise. In the past years, the pitch between terminals used to be 0.050 inches; this size has since been reduced to 0.02 inches. This issue occurs when the solder fails to separate from two or more leads before it solidifies. Therefore, reducing the length and size of the pad will go a long way in decreasing the amount of solder that will be held on the board. While this seldom happens, solder short can also occur on the top side of the board. This occurs when too much pressure induces excessive solder penetration.
Poor or Inconsistent Hole Fill
This problem occurs when the solder wets the leads but fails to touch the surfaces of the through-hole. Poor flux application and low pre-heat temperature are the common causes of inconsistent hole fill. This issue is often a natural consequence of a manufacturer's action of changing from foam to spray fluxer, which causes poor flux penetration into the holes. Inconsistent hole fill can be avoided by maintaining the temperature of the printed board between 100–110°C. This is especially true for multilayer and double-sided PCBs. Single boards are processed at a much lower temperature as no solder penetration is required.
Inconsistent hole fill can be avoided by maintaining the temperature of the printed board between 100-110°C. This is especially true for multilayer and double-sided PCBs. Single boards are processed at a much lower temperature as no solder penetration is required.
Lifted Components
Lifted components on PCBs occur due to a combination of physical and thermal issues. The heat produced during the soldering process can lower the adhesion of the copper, which makes the board weak. As such, any forceful handling of the board may cause a component lift. This problem can be avoided by using careful handling of the board when removing it from the soldering machine. You could also use epoxy with high thermal resistance and avoid exposing the PCB to excessive heat for a prolonged period.
Conclusion
Wave soldering is an effective method employed when assembling vital electrical components on printed circuit boards. However, sometimes a few problems such as pinholes, inconsistent hole fill, lifted components, and solder shorts might be experienced. By taking a little extra care and diligence, it's quite apparent that these issues can be effectively avoided or corrected.
Neil Blundell is the managing director of Blundell Production Equipment. For more information on Blundell Production Equipment, click here.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Closing the Loop on PCB Etching Waste
09/09/2025 | Shawn Stone, IECAs the PCB industry continues its push toward greener, more cost-efficient operations, Sigma Engineering’s Mecer System offers a comprehensive solution to two of the industry’s most persistent pain points: etchant consumption and rinse water waste. Designed as a modular, fully automated platform, the Mecer System regenerates spent copper etchants—both alkaline and acidic—and simultaneously recycles rinse water, transforming a traditionally linear chemical process into a closed-loop system.
Driving Innovation: Depth Routing Processes—Achieving Unparalleled Precision in Complex PCBs
09/08/2025 | Kurt Palmer -- Column: Driving InnovationIn PCB manufacturing, the demand for increasingly complex and miniaturized designs continually pushes the boundaries of traditional fabrication methods, including depth routing. Success in these applications demands not only on robust machinery but also sophisticated control functions. PCB manufacturers rely on advanced machine features and process methodologies to meet their precise depth routing goals. Here, I’ll explore some crucial functions that empower manufacturers to master complex depth routing challenges.
Trouble in Your Tank: Minimizing Small-via Defects for High-reliability PCBs
08/27/2025 | Michael Carano -- Column: Trouble in Your TankTo quote the comedian Stephen Wright, “If at first you don’t succeed, then skydiving is not for you.” That can be the battle cry when you find that only small-diameter vias are exhibiting voids. Why are small holes more prone to voids than larger vias when processed through electroless copper? There are several reasons.
The Government Circuit: Navigating New Trade Headwinds and New Partnerships
08/25/2025 | Chris Mitchell -- Column: The Government CircuitAs global trade winds continue to howl, the electronics manufacturing industry finds itself at a critical juncture. After months of warnings, the U.S. Government has implemented a broad array of tariff increases, with fresh duties hitting copper-based products, semiconductors, and imports from many nations. On the positive side, tentative trade agreements with Europe, China, Japan, and other nations are providing at least some clarity and counterbalance.
How Good Design Enables Sustainable PCBs
08/21/2025 | Gerry Partida, Summit InterconnectSustainability has become a key focus for PCB companies seeking to reduce waste, conserve energy, and optimize resources. While many discussions on sustainability center around materials or energy-efficient processes, PCB design is an often overlooked factor that lies at the heart of manufacturing. Good design practices, especially those based on established IPC standards, play a central role in enabling sustainable PCB production. By ensuring designs are manufacturable and reliable, engineers can significantly reduce the environmental impact of their products.