-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current Issue
Power Integrity
Current power demands are increasing, especially with AI, 5G, and EV chips. This month, our experts share “watt’s up” with power integrity, from planning and layout through measurement and manufacturing.
Signal Integrity
If you don’t have signal integrity problems now, you will eventually. This month, our expert contributors share a variety of SI techniques that can help designers avoid ground bounce, crosstalk, parasitic issues, and much more.
Proper Floor Planning
Floor planning decisions can make or break performance, manufacturability, and timelines. This month’s contributors weigh in with their best practices for proper floor planning and specific strategies to get it right.
- Articles
- Columns
- Links
- Media kit
||| MENU - design007 Magazine
New Fabric-Based Sensor Overcomes Loose Clothing Obstacle
November 13, 2018 | UMass AmherstEstimated reading time: 2 minutes
In a paper presented at SenSys 2018, the 16th ACM Conference on Embedded Networked Sensor Systems November 4-7 in Shenzhen, China, a team of UMass Amherst scientists introduced Tribexor, a fabric-based triboelectric joint sensing system that can be integrated with loose-fitting clothing to sense a variety of joint movements such as flexion, extension and velocity of joint movement.
The team included electrical and computer engineering graduate students Ali Kiaghadi and Morgan Baima, with senior computer science researcher Jeremy Gummeson and professors Trisha Andrew, chemistry, and Deepak Ganesan, computer science,
As they point out, in the field of wearable devices one area expected to grow dramatically in the next decade issmart clothing – shirts, pants, bandages and caps fitted with instruments to perform health monitoring functions, for example. Compared to devices like smart watches, smart garments can become part of one’s daily routine and measure a much larger set of body locations.
But a fundamental problem for smart garments is whether they can obtain useful signals from loosely worn clothing, Ganesan explains. Many sensors, like inertial sensors and electromyography require a tight fit to reduce motion artifacts and obtain a meaningful signal. But tight clothing is uncomfortable to wear and not appropriate in many applications such as elder care and patient care, he adds.
For their new device, the researchers used functionalized triboelectric fabric developed in Andrew’s materials chemistry lab. The fabric is comprised of layers that transfer surface charge from one layer to another and generate a voltage or current when compressed, tugged or twisted due to joint motion. This translates movement into an electrical signal and extract useful information from loosely worn smart textiles.
Ganesan says, “Normally, loose fitting clothing would be considered a problem because that means we have to deal with a significant amount of noise, which is already a problem for relatively tight fitting devices like fitness bands.” But the Tribexor device turns this limitation into an advantage, he notes, because loose-fitting clothing can fold, compress and twist more.
The authors report that Tribexor has 95 percent accuracy for detecting elbow and knee flexion and extension movements and 85 percent accuracy for estimating angular velocity of the elbow and knee joints. It also accurately detects a variety of activities of daily living allowing it to be used instead of a smartwatch to monitor activity.
The researchers expect such advances to expand the usefulness of fabric-based sensors. Andrew says, “This technology can be particularly useful for monitoring elderly individuals. Current generation wearables, like smartwatches, are not ideal for this population since elderly individuals often forget to consistently wear or are resistant to wearing additional devices, whereas clothing is already a normal part of their daily routine.”
The authors are collaborating with the Institute of Applied Life Sciences (IALS) with the goal of translating life science research into products that improve human health. Peter Reinhart, IALS director, says, “This is a very exciting new technology which can enable monitoring of many limbs and joints to measure gait imbalance, sleep disturbances and changes in motor activity and posture. It is also wonderful to see such interdisciplinary collaboration generate exciting new ideas that can impact the future of health care.”
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Elkem Launches Biocompatible, Conductive SILBIONE LSR for Advanced Medical Devices
10/23/2025 | PRNewswireElkem ASA, a global leader in advanced silicon-based materials, unveiled SILBIONE LSR Select EC 70, a next-generation medical-grade liquid silicone rubber. Designed for wearable and diagnostic devices, the material combines high electrical conductivity, certified biocompatibility1, and enhanced process control, setting a new standard for precision healthcare applications.
Worldwide Smartphone Market Grows 2.6% in Q3 2025 as Upgrades Accelerate, Driven by New Innovative Products
10/20/2025 | IDCAccording to preliminary data from the International Data Corporation (IDC) Worldwide Quarterly Mobile Phone Tracker , global smartphone shipments increased 2.6% year-over-year (YoY) to 322.7 million units in the third quarter of 2025 (3Q25).
High-Tech Hill Technology Park Opens: Four New Factories Launched
09/26/2025 | TeltonikaThe ambitious vision announced in late 2020 to build a world-class technology park in Liepkalnis, Vilnius, has become a reality. AGP Investments, led by entrepreneur Arvydas Paukštys, together with high-tech leaders Teltonika and TLT, today inaugurated four new factories at the Vilnius High-Tech Hill Technology Park.
Knocking Down the Bone Pile: Best Practices for Electronic Component Salvaging
09/17/2025 | Nash Bell -- Column: Knocking Down the Bone PileElectronic component salvaging is the practice of recovering high-value devices from PCBs taken from obsolete or superseded electronic products. These components can be reused in new assemblies, reducing dependence on newly purchased parts that may be costly or subject to long lead times.
Global Interposer Market to Surge Nearly Fivefold by 2034
09/15/2025 | I-Connect007 Editorial TeamRevenue for the global interposer market is projected to climb from $471 million in 2025 to more than $2.3 billion by 2034, according to a new report from Business Research Insights. The growth represents a CAGR of nearly 20 percent over the forecast period.