-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueRules of Thumb
This month, we delve into rules of thumb—which ones work, which ones should be avoided. Rules of thumb are everywhere, but there may be hundreds of rules of thumb for PCB design. How do we separate the wheat from the chaff, so to speak?
Partial HDI
Our expert contributors provide a complete, detailed view of partial HDI this month. Most experienced PCB designers can start using this approach right away, but you need to know these tips, tricks and techniques first.
Silicon to Systems: From Soup to Nuts
This month, we asked our expert contributors to weigh in on silicon to systems—what it means to PCB designers and design engineers, EDA companies, and the rest of the PCB supply chain... from soup to nuts.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
Max Seeley’s PCB Design Career is No Fish Story
November 14, 2018 | Andy Shaughnessy, Design007 MagazineEstimated reading time: 6 minutes
Max Seeley, senior electrical, PCB, and manufacturing engineer with 3M, was an instructor at the first AltiumLive event in 2017, and he made a return visit to this year’s event in San Diego. I asked Max why he decided to come back to AltiumLive this year and to share the story of his rather circuitous journey into PCB design, which included a turn as a custom aquarium builder.
That’s one of the things I love about this industry: Everyone in PCB design has a different backstory.
Andy Shaughnessy: Max, you were at the inaugural 2017 AltiumLive event and are a returning speaker this year. What made you decide to come back?
Max Seeley: I was very impressed with the conference last year. Coming to the conference last year, I was a little bit leery that it was just going to be one big promotional event for Altium Designer, but it wasn't. I really enjoyed the material that was presented last year. This year, they've stepped it up even more with the speakers that they've brought in like Eric Bogatin, Lee Ritchey, and Rick Hartley. Plus, the weather in San Diego is always desirable; that was motivating as well.
Shaughnessy: What courses are you going to teach this year?
Seeley: My course this year is a breakout session. Basically, in the PCB world, we get heavily focused on length matching. In short, I want to talk about what truly drives length matching. And it's not really length matching, but propagation delay matching and all the factors in a PCB that influence the propagation delay of a signal traveling on a PCB. In addition, I want to give people insight into why they're doing this; ultimately, it's to meet timing requirements for the bus that you're looking at.
Shaughnessy: In your job, what are some typical challenges that you see?
Seeley: I work at 3M, and in my group specifically, I am part of the corporate research lab. In particular, I'm in the Digital Solutions Group (DSG). When a project is deemed to have significant enough importance to the company, my group is tasked with helping the division commercialize it. So, 3M is composed of 27 different divisions right now, but the number is always changing. In a lot of ways, those segments act like separate businesses, so they'll come to the corporate research lab and say, "Here's a project that we have in mind." If my group gets assigned to it, we assist them with bringing it to market.
My primary focus has been very small form-factor high-speed electronics. The big challenge with that is making it small and cost-effective. The other two things that come into play with that are power management and thermal performance of the electronics. So, figuring out the best compromise between all of those different constraints and coming up with something that will work in the end.
Shaughnessy: How long have you been teaching design classes?
Seeley: When I went back to school to get my electrical engineering degree, I latched onto PCB layout. One of the things that I learned in my company was that I loved building things, so I went back to school.
Shaughnessy: So, you have a physics degree, which is interesting, and then you went back to school.
Seeley: I had a physics degree and I worked on an experiment called the MINOS experiment, which is a main injector neutrino oscillation search. Basically, they created a beam of neutrinos at Fermilab, and they have a detector up in the iron ore mines in Northern Minnesota. The neutrinos just pass through the ground like it's not even there and interact with the detector in Tower, Minnesota.
I was on that experiment and got the opportunity to go down to Fermilab, and it was there that I realized that I didn't want to do physics for a career. I don't know if you've ever been to Fermilab, but it's very interesting. It's like a time capsule out of the '60s. You just walk around there, and what that said to me is that our country isn't really investing in the core sciences like we once did if there's not something immediately commercializable out it. I went there and was just depressed. So, I decided that I didn't want to do physics for a career, and you have to get your Ph.D. to do something in physics anyway.
At the time, a big hobby of mine was maintaining coral reef aquariums. A buddy of mine was doing rehab on an NBA player's house, and the guy wanted two fish tanks. I did the fish tanks for him, and it ended up growing into a business. For five or six years, I ran that business called Aquatic Arts. It was the worst and the best experience of my life. It was extremely stressful because we were on call 24 hours a day, seven days a week. For the first two years, I essentially couldn't leave town because it was a one-man operation. As we grew, other challenges came into play.
Doing that job, what I learned about myself was that what I enjoyed the most about that job was that we fabricated all the stands. They were big structures made of welded tube steel. There were also acrylic aquariums that we built ourselves, and we designed and built all the filtration. The thing that I enjoyed the most about that job was the end of a build when everything came together, we put fish or corals into that tank for the first time, and sat back and saw something tangible that I had played a key role in designing and building, which was extremely gratifying to me.
The business went under in 2008. For about a year, I worked at the aquarium at the Mall of America and then decided that the long-term prospects for that were pretty bleak. So, I went back and got a second degree in electrical engineering. When I was back at school, what I immediately glommed onto was we had a junior-level project where we had to design an AM radio. As part of designing that AM radio, we had to create a circuit board, which was absolutely enthralling to design it, get it built, and receive it back.
The frustrating part was essentially being told just to use EAGLE, and then we were pointed to some tutorials on SparkFun, but no one had any idea on how to build a PCB. It was really challenging to figure out how to get that information. I mean, it just wasn't at your fingertips. It was pretty obscure and hidden, and it was hard to find textbooks on it. They existed, but I just didn't know what they were.
In doing that, the University of Minnesota had a shop where you could make a PCB using an LPKF mechanical router. So, I started working on that. As a result, I started helping all the other students with their designs, so I started to evolve into a PCB expert. It's still an evolution, but I became the PCB expert at the University of Minnesota. Next, one of the instructors asked me to look at Altium Designer. I went to Altium's website, checked them out, and was just pretty blown away by Altium.
I would say the biggest thing at that point for me as a student was that Altium had all of the user documentation. They had videos that were readily available, and I was really looking for that kind of information, so I just latched onto Altium Designer. Then, I started teaching classes at the University of Minnesota as a student teaching other students and staff.
Shaughnessy: I hear some designers are using it for high-speed stuff, even though it’s not officially a high-speed tool.
Seeley: It has its challenges, and some things take a little bit more manual intervention on the part of the designer to get right, but with xSignals, I think they've come a long way. For us, we use HyperLynx a lot to supplement our signal integrity. We definitely make it work.
Shaughnessy: Sounds like you have done a lot of different things. Thanks for speaking with me today, Max.
Seeley: Thanks for having me, Andy.
Suggested Items
PCB Layout Rules of Thumb for Consideration
11/25/2024 | Patrick Davis, Cadence Design SystemsJust because a “rule of thumb” is usually based on experience instead of precise facts doesn’t negate its value. For instance, when I told my kids that a good rule of thumb was not to back-talk to their mother, they discovered very quickly how accurate my advice was once they crossed that line. There are a lot of rules of thumb that we rely on daily, including those that apply to PCB design.
HPC Customer Engages Sondrel for High End Chip Design
11/25/2024 | SondrelSondrel, a leading provider of ultra-complex custom chips, has announced that it has started front end, RTL design and verification work on a high-performance computing (HPC) chip project for a major new customer.
Rules of Thumb for PCB Layout
11/21/2024 | Andy Shaughnessy, I-Connect007The dictionary defines a “rule of thumb” as “a broadly accurate guide or principle, based on experience or practice rather than theory.” Rules of thumb are often the foundation of a PCB designer’s thought process when tackling a layout. Ultimately, a product spec or design guideline will provide the detailed design guidance, but rules of thumb can help to provide the general guidance that will help to streamline the layout process and avoid design or manufacturing issues.
PCB Design Software Market Expected to Hit $9.2B by 2031
11/21/2024 | openPRThis report provides an overview of the PCB design software market, detailing key market drivers, challenges, technological advancements, regional dynamics, and future trends. With a projected compound annual growth rate (CAGR) of 13.4% from 2024 to 2031, the market is expected to grow from USD 3.9 billion in 2024 to USD 9.2 billion by 2031.
KYZEN to Spotlight KYZEN E5631, AQUANOX A4618 and Process Control at SMTA Silicon Valley Expo and Tech Forum
11/21/2024 | KYZEN'KYZEN, the global leader in innovative environmentally friendly cleaning chemistries, will exhibit at the SMTA Silicon Valley Expo & Tech Forum on Thursday, December 5, 2024 at the Fremont Marriott Silicon Valley in Fremont, CA.