-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueRules of Thumb
This month, we delve into rules of thumb—which ones work, which ones should be avoided. Rules of thumb are everywhere, but there may be hundreds of rules of thumb for PCB design. How do we separate the wheat from the chaff, so to speak?
Partial HDI
Our expert contributors provide a complete, detailed view of partial HDI this month. Most experienced PCB designers can start using this approach right away, but you need to know these tips, tricks and techniques first.
Silicon to Systems: From Soup to Nuts
This month, we asked our expert contributors to weigh in on silicon to systems—what it means to PCB designers and design engineers, EDA companies, and the rest of the PCB supply chain... from soup to nuts.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
Achieving Minimal Crosstalk in Multi-board Interconnect
November 20, 2018 | Chang Fei Yee, Keysight TechnologiesEstimated reading time: 1 minute
This article discusses the impact of signal routing and return path or reference on crosstalk in multi-board interconnect. The investigation is performed with 3DEM simulation using Keysight EMPro. Subsequently, crosstalk in frequency and time domain are observed, along with surface current density on the return path.
Introduction
In an electronic system, the signal transmission exists in a closed-loop form. The forward current propagates from transmitter to receiver through the signal trace. On the other hand, for a single PCB, the return current travels backward from receiver to transmitter through the ground plane closest to the signal trace. Meanwhile, for multi-board interconnect (e.g., connectivity through flex or ribbon cable), the return current travels back to the transmitter through the ground or return wire, preferably as close as possible to the signal wire. The path of forward current and return current forms a loop inductance.
It is important to provide sufficient ground or return wire in multi-board interconnect. Otherwise, the return current might detour and propagate on a longer path that leads to the sharing of common return wire or path by different signals that poses high risk of interference or coupling among the signals due to higher mutual inductance. This interference results in signal crosstalk. This phenomenon is proven in the following section with 3DEM simulation.
Analyzing Crosstalk with 3DEM Modeling
To investigate the impact of signal routing and the return path on multi-board signal integrity, three test models of 3DEM were constructed using Keysight EMPro. In test case 1, two microstrip signal traces with 50 ohm characteristic impedance in single-ended mode on board “A” are connected to board “B” using flex cable. The signal traces on each board are 100 mils long, 1.2 mils thick and 5 mils wide. The solid ground plane exist 3 mils beneath the signals on each board. FR-4 is used as the PCB dielectric substrate.
To read this entire article, which appeared in the September 2018 issue of Design007 Magazine, click here.
Suggested Items
iNEMI HDI Socket Warpage Prediction and Characterization Webinar
11/15/2024 | iNEMIHigh-density interconnect (HDI) sockets, primarily designed for CPUs and GPUs, are shifting toward larger form factors as the number of interconnect pins increases.
Siemens Strengthens Leadership in Industrial Software and AI with Acquisition of Altair Engineering
10/31/2024 | SiemensSiemens has signed an agreement to acquire Altair Engineering Inc., a leading provider of software in the industrial simulation and analysis market.
Duality AI Contracts with NASA JPL for Phase II of DARPA RACER Program
09/13/2024 | BUSINESS WIREDuality AI, the company behind Falcon, a digital twin simulation platform, today announced an agreement with NASA’s Jet Propulsion Laboratory (NASA JPL) in Pasadena to continue its work on Defense Advanced Research Projects Agency’s (DARPA’s) Robotic Autonomy in Complex Environments with Resiliency program (RACER).
Electronic Design Automation Market Valuation is Poised to Reach $35.3 Billion By 2032
08/08/2024 | Globe NewswireThe global electronic design automation market is projected to hit the market valuation of US$35.3 billion by 2032 from $15.8 billion in 2023 and at a CAGR of 9.75% during the forecast period 2024–2032.
CACI Awarded $319 Million Task Order to Provide Intelligence Systems Expertise to the U.S. Army
08/05/2024 | CAC, Inc.CACI International Inc announced that it has been awarded a five-year task order valued at up to $319 million to provide intelligence systems expertise to the U.S. Army, Communications-Electronics Command (CECOM), Software Engineering Center (SEC), Electronic Warfare and Sensors Directorate (IEWSD), Army Reprogramming Analysis Team-Program Office (ARAT-PO).