-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueSignal Integrity
If you don’t have signal integrity problems now, you will eventually. This month, our expert contributors share a variety of SI techniques that can help designers avoid ground bounce, crosstalk, parasitic issues, and much more.
Proper Floor Planning
Floor planning decisions can make or break performance, manufacturability, and timelines. This month’s contributors weigh in with their best practices for proper floor planning and specific strategies to get it right.
Showing Some Constraint
A strong design constraint strategy carefully balances a wide range of electrical and manufacturing trade-offs. This month, we explore the key requirements, common challenges, and best practices behind building an effective constraint strategy.
- Articles
- Columns
- Links
- Media kit
||| MENU - design007 Magazine
Embedded Inductors with Laser Machined Gap
December 17, 2018 | Jim Quilici, Radial ElectronicsEstimated reading time: 14 minutes
(4) AL = μ0 μr Ac / le
From Equation 4, the inductance factor is directly proportional to the relative permeability, μr. In the case of the 5K permeability 6.35 mm OD core, the AL value is 1.6 µH/N2, where N is the number of windings applier to the core. From the manufacturer specifications, the core has a cross section area Ac of 3.2 mm2 and a path length le of 15.9 mm. To calculate the AL value for the gapped core, we need to return to Equation 3. We have all the details to calculate the gapped AL value, except the gap width, g. Selecting the gap size requires trial and error. Inductors with larger gaps will have more stability, yet AL values decrease with wider gaps. Cores with larger gaps require more windings to achieve a specific inductance.
For this experiment, the objective is to cut a 0.15 mm gap into the 6.35 mm OD cores. Large cores are often gapped using diamond wheel cutters and other milling techniques. A typical gap from a diamond wheel is ≥0.25 mm. For small diameter cores (< 10mm OD), the handling and required fixtures for diamond wheel cutting can be challenging. With the embedded magnetic structure, we have the advantage of the cores being embedded and arrayed in an FR-4 substrate. This greatly facilitates the handling during the gapping procedure. Rather than holding each core individually, panel arrays can be placed on and X-Y stepping table and each core can be laser machined with a high degree of precision and efficiency. Gap widths can be narrower than what is practical with diamond wheel cutting. Also, the laser gapping process time is in the range of 3 to 10 s per core, which is much faster than what can be achieved with mechanical gapping, where one has to fixture and handle each core. For the core machined with a 0.15 mm slit, the new AL' value is calculated as follows:
μr' = 5000 / (1 + (0.15mm x 5000/15.9mm)) = 103
AL =(12.57)(119)(3.2mm2) / (15.9mm) = 260 nH/N2
Inductance can now be calculated by multiplying the AL value by the square of the turns:
(5) L = AL N2
With desired inductance of 10 µH, the required number of windings are calculated to be 6 turns. To test the gapping of the embedded cores, a test panel was designed with different winding configurations. Embedded magnetic inductors were designed with 8, 10 and 12 windings. A 3 mm thick panel of FR-4 sheet stock was milled with cavities to accommodate the cores. The cavities were milled to 2.8 mm depth and the ferrite cores were inserted and encapsulated with low shrink epoxy. Around 1 oz Cu foil was applied to the top and bottom surfaces using two layers of 1080 pre-preg. Vias were drilled and plated to interconnect the top and bottom layers. Inductive windings were then applied through photolithography. Figure 5 shows the layer stack-up for the PCB.
Figure 5: Test coupon cross section.
For laser cutting, there are two basic systems that are commonly used in industrial machining; CO2, and YAG. The CO2 has the larger beam width of 10 µm while the YAG beam width is 1.06 µm. Either system can be used for gapping the embedded cores. CO2 is good for cutting organics while YAG is often preferred for cutting metals and ceramics. In the cutting region, the bulk of the PCB cross section is filled with the ceramic ferrite material. So, for this experiment, the narrow beam YAG laser was selected with the objective of producing a 0.13 mm (130 µm) gap. To optimize the laser cutting, the key parameters include beam power, beam aperture, feed rate, pulse rate, and focus depth. Experimental cuts were made using different power settings, focus levels. Additionally, different focus depths and multiple passes were investigated. After some experimentation, we settled on one pass focused 1 mm below the top surface of the panel and a feed rate of 1.3 mm/s. The cutting distance is 1.78 mm, so the actual cutting time was within 3 s. Forced argon gas was used to cool the cutting surface and blow out slag.
Figure 6: Laser gapped embedded inductors, 10 winding configuration.
Two test panels were fabricated with three different windings configurations; 8, 10 and 12 windings. For each configuration, two rows of 10 units were implemented for each winding implementation. Here, the results are reported for the 10 turn configuration. The first panel was used to experiment with laser settings. Once the settings were established, they were used to run the second panel. Figure 6 shows some of the 10 winding devices. While the objective was to cut a 0.15 mm gap, during the experimentation phase, the gaps were inspected under a microscope and it was noticed that some debris and particulate remained in the gap after laser cutting. Also, inductance was measured after each test cut. Better consistency was achieved by widening the gap to about 0.2 mm. This allowed much of the debris to be blown out of the gap by the laser and forces argon gas. With the wider gap, it was still possible to achieve 10 µH of inductance when using the 10 winding configuration. Table 1 summarizes the laser parameters that were used to cut gaps in the second panel. The inductance data for 20 units of the 10 winding configuration is summarized for each row in Table 2. Before gapping, the cores exhibited an AL value of 1.6 µH/N2. After laser gapping, the AL value diminished to 0.10 µH/N2. This is much lower than the calculated value and is attributed to the wider gap width. For the top row, the average inductance was 11.4 µH, 14% above the design target of 10 µH. For the second row, the nominal value was within 4% of 10 µH. The data in the second row is partly skewed due to the low inductance value of the 10th unit in that row. The laser settings were by no means optimized and further refinement of the gapping process can narrow the data distribution and tolerance.
Table 1: Summary of laser parameters used in the experiment.
Page 2 of 3
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Closing the Loop on PCB Etching Waste
09/09/2025 | Shawn Stone, IECAs the PCB industry continues its push toward greener, more cost-efficient operations, Sigma Engineering’s Mecer System offers a comprehensive solution to two of the industry’s most persistent pain points: etchant consumption and rinse water waste. Designed as a modular, fully automated platform, the Mecer System regenerates spent copper etchants—both alkaline and acidic—and simultaneously recycles rinse water, transforming a traditionally linear chemical process into a closed-loop system.
Driving Innovation: Depth Routing Processes—Achieving Unparalleled Precision in Complex PCBs
09/08/2025 | Kurt Palmer -- Column: Driving InnovationIn PCB manufacturing, the demand for increasingly complex and miniaturized designs continually pushes the boundaries of traditional fabrication methods, including depth routing. Success in these applications demands not only on robust machinery but also sophisticated control functions. PCB manufacturers rely on advanced machine features and process methodologies to meet their precise depth routing goals. Here, I’ll explore some crucial functions that empower manufacturers to master complex depth routing challenges.
Trouble in Your Tank: Minimizing Small-via Defects for High-reliability PCBs
08/27/2025 | Michael Carano -- Column: Trouble in Your TankTo quote the comedian Stephen Wright, “If at first you don’t succeed, then skydiving is not for you.” That can be the battle cry when you find that only small-diameter vias are exhibiting voids. Why are small holes more prone to voids than larger vias when processed through electroless copper? There are several reasons.
The Government Circuit: Navigating New Trade Headwinds and New Partnerships
08/25/2025 | Chris Mitchell -- Column: The Government CircuitAs global trade winds continue to howl, the electronics manufacturing industry finds itself at a critical juncture. After months of warnings, the U.S. Government has implemented a broad array of tariff increases, with fresh duties hitting copper-based products, semiconductors, and imports from many nations. On the positive side, tentative trade agreements with Europe, China, Japan, and other nations are providing at least some clarity and counterbalance.