-
-
News
News Highlights
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueAll About That Route
Most designers favor manual routing, but today's interactive autorouters may be changing designers' minds by allowing users more direct control. In this issue, our expert contributors discuss a variety of manual and autorouting strategies.
Creating the Ideal Data Package
Why is it so difficult to create the ideal data package? Many of these simple errors can be alleviated by paying attention to detail—and knowing what issues to look out for. So, this month, our experts weigh in on the best practices for creating the ideal design data package for your design.
Designing Through the Noise
Our experts discuss the constantly evolving world of RF design, including the many tradeoffs, material considerations, and design tips and techniques that designers and design engineers need to know to succeed in this high-frequency realm.
- Articles
- Columns
- Links
- Media kit
||| MENU - design007 Magazine
Embedded Inductors with Laser Machined Gap
December 17, 2018 | Jim Quilici, Radial ElectronicsEstimated reading time: 14 minutes
Table 2: Inductance data.
Table 3: Winding resistance.
As described earlier, gapping reduces the cores sensitivity to DC currents. Figure 7 shows the inductance versus DC current for a typical 5K permeability core and the gapped samples. Prior to gapping, the embedded 10 turn inductors exhibited inductances in the range of 140 to 170 µH. To demonstrate the response of the un-gapped core, a 10 turns inductor with 158 µH at 0 DC bias current was tested. As DC current is applied, the inductance diminished quickly. At 40 mA of DC current, the inductance of the un-gapped core diminishes to half of the starting value. In comparison, the second plot shows the performance for 5 gapped inductors when a DC bias current is applied. Degradation over the range of 0 to 0.5A is about 20% to 25%.
Figure 7: Inductance vs DC current for un-gapped and gapped ferrite cores.
Additionally, devices were tested over temperature. Figure 8 shows the characteristics for the un-gapped and gapped core from 0°C to 100°C. The ungapped core exhibits variation exceeding 20% over the temperature range while the gapped devices exhibit very little variation over the temperature range and remain within 10% of their value at ambient temperature.
Figure 8: Inductance vs. temperature for un-gapped and gapped ferrite cores.
Finally, a few of the inductors were cross sectioned to inspect the laser cut. Figure 9 shows a photo of a cross sectioned part. The direction of the laser cut was from top to bottom. The laser cut has a width in the 0.20 mm to 0.25 mm range.
Figure 9: Cross section view.
Summary
This paper demonstrates the viability for laser gapping embedded transformers and inductors. The PCB structure of the embedded magnetics brings efficiency to the gapping process. A design example was presented for a 10 µH inductor. After gapping, the device exhibited good stability under varying temperatures and DC bias current. Such device would be suitable for SMPC power converters operating in the 500 kHz to 2 MHz range. The embedded toroid structure is useful for reducing the circuit footprint and cost and is suitable for implementation in either a power conversion module or directly in the system board.
The original objective was to produce a 10 µH inductor using a 6 winding configuration and 0.15 mm wide gap. After experimentation, a 0.2 mm gap was implemented. The larger gap allowed debris to be blow out of the gap during the laser process and provided more consistency between inductance of the gapped devices. The caveat is that the larger gap requires designing the inductor to have a higher initial value. A 10 µH inductor was realized using a 10 turn configuration that had a pre-gapped inductance in the range of 140 µH to 170 µH. Design equations and methodology were presented as a guide for designers who want to pursue this technology.
References
1. Ferroxcube Product Selection Guide 2009.
2. Sanjaya ManikTala, Switching Power Supplies A to Z, 2006 Elsevier Inc., Burlington, MA.
This paper was first presented at the 2018 IPC Apex Expo Technical Conference and published in the 2018 Technical Conference Proceedings.
Jim Quilici is a design consultant at Radial Electronics. You may reach Jim at jquilici@radial-e.com.
Page 3 of 3Suggested Items
The Evolution of Picosecond Laser Drilling
06/19/2025 | Marcy LaRont, PCB007 MagazineIs it hard to imagine a single laser pulse reduced not only from nanoseconds to picoseconds in its pulse duration, but even to femtoseconds? Well, buckle up because it seems we are there. In this interview, Dr. Stefan Rung, technical director of laser machines at Schmoll Maschinen GmbH, traces the technology trajectory of the laser drill from the CO2 laser to cutting-edge picosecond and hybrid laser drilling systems, highlighting the benefits and limitations of each method, and demonstrating how laser innovations are shaping the future of PCB fabrication.
Day 2: More Cutting-edge Insights at the EIPC Summer Conference
06/18/2025 | Pete Starkey, I-Connect007The European Institute for the PCB Community (EIPC) summer conference took place this year in Edinburgh, Scotland, June 3-4. This is the third of three articles on the conference. The other two cover Day 1’s sessions and the opening keynote speech. Below is a recap of the second day’s sessions.
Day 1: Cutting Edge Insights at the EIPC Summer Conference
06/17/2025 | Pete Starkey, I-Connect007The European Institute for the PCB Community (EIPC) Summer Conference took place this year in Edinburgh, Scotland, June 3-4. This is the second of three articles on the conference. The other two cover the keynote speeches and Day 2 of the technical conference. Below is a recap of the first day’s sessions.
Preventing Surface Prep Defects and Ensuring Reliability
06/10/2025 | Marcy LaRont, PCB007 MagazineIn printed circuit board (PCB) fabrication, surface preparation is a critical process that ensures strong adhesion, reliable plating, and long-term product performance. Without proper surface treatment, manufacturers may encounter defects such as delamination, poor solder mask adhesion, and plating failures. This article examines key surface preparation techniques, common defects resulting from improper processes, and real-world case studies that illustrate best practices.
RF PCB Design Tips and Tricks
05/08/2025 | Cherie Litson, EPTAC MIT CID/CID+There are many great books, videos, and information online about designing PCBs for RF circuits. A few of my favorite RF sources are Hans Rosenberg, Stephen Chavez, and Rick Hartley, but there are many more. These PCB design engineers have a very good perspective on what it takes to take an RF design from schematic concept to PCB layout.