-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueRules of Thumb
This month, we delve into rules of thumb—which ones work, which ones should be avoided. Rules of thumb are everywhere, but there may be hundreds of rules of thumb for PCB design. How do we separate the wheat from the chaff, so to speak?
Partial HDI
Our expert contributors provide a complete, detailed view of partial HDI this month. Most experienced PCB designers can start using this approach right away, but you need to know these tips, tricks and techniques first.
Silicon to Systems: From Soup to Nuts
This month, we asked our expert contributors to weigh in on silicon to systems—what it means to PCB designers and design engineers, EDA companies, and the rest of the PCB supply chain... from soup to nuts.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
Calculation of Frequency-Dependent Effective Roughness Dielectric Parameters for Copper Foil Using Equivalent Capacitance Models
January 2, 2019 | Marina Y. Koledintseva, Metamagnetics Inc.*, and Tracey Vincent, CST of AmericaEstimated reading time: 20 minutes
Printed circuit boards (PCBs) used in high-speed digital design are known to have a substantial level of copper foil roughness which compromises signal integrity (SI) and may also cause electromagnetic compatibility (EMC) problems. Therefore, knowledge of the correct parameters of laminate PCB dielectrics refined from any copper foil roughness impact and the proper foil roughness characterization are important constituents of modeling high-speed digital electronics designs, see, e.g., [1,2,3] and references therein.
The Effective Roughness Dielectric (ERD) concept was introduced in [4,5,6]. ERD is a homogeneous lossy dielectric layer of certain thickness Tr with effective (averaged) dielectric constant DKr and dissipation factor DFr. ERD is placed on a smooth conductor surface to substitute an inhomogeneous transition layer between a conductor and laminate substrate dielectric. While the concept is simple, it is physically illuminating, meaningful, and powerful. It has been successfully applied to model conductor (copper foil) roughness in printed circuit boards for signal integrity (SI) and electromagnetic interference (EMI) purposes when designing high-speed digital electronics devices [7,8]. The ERD model has been implemented and tested in a number of numerical electromagnetic modeling tools, see, e.g., [9,10,11,12].
In our previous publications [6,13,14], the ERD “design curves”, determining the ranges of the DKr and DFr parameters for different types of PCB copper foils, were developed. The methodology of generating these “design curves” is based on the following procedures:
- Stripline S-parameter Sweep (S3) technique to measure S-parameters of single-ended comparatively long (~40 cm, or 16 inches) striplines with TRL calibration to remove connector effects [15,16];
- Scanning Electron Microscopy (SEM) or high-resolution optical microscopy of cross-sections of PCB samples with signal traces and the proper quantification of surface roughness profile parameters [17,18,19];
- Differential Extrapolation Roughness Measurement (DERM) technique [20,21,22]; and
- 2D-FEM and/or 3D FIT numerical modeling that allow for accurately fitting the measured S-parameters of the striplines and extract the data for DKr and DFr of the roughness layers [4,6,13,14]. This fitting may include an optimization procedure, e.g., a genetic algorithm, to minimize the discrepancy between the modeled and measured S-parameters.
The "design curves" in the abovementioned papers were generated using SEM and/or optical microscopy to quantify foil roughness. Any designer can use these “design curves” and does not necessarily need to cut a PCB and prepare samples of the lines cross-sections for microscopic inspection. It is sufficient to know which type of foil is used in the PCB under test – this may be standard (STD) foil, VLP (very low profile), RTF (reverse-treated foil), or HVLP (hyper-very low profile)/ SVLP (super-very low profile) foil. Each foil type (group) has some ranges of DKr, DFr, and Tr values, and a designer may take average values DKr, DFr, and Tr within these ranges for the reasonable estimation of the data which then could be used in modeling of the PCB designs.
Although the “design curves” were developed using fitting between the experimental data and modeling results, it is always desirable to have an analytical model. In this work, the DKr and DFr parameters are derived based on the understanding that the transition layer between the dielectric and foil contains gradual variation of concentration of metallic inclusions: from zero concentration in laminate dielectric through some percolation limit to 100% at the smooth copper foil level. The equivalent material parameters of this layered structure can be obtained using equivalent capacitance approach. In the equivalent capacitor the dielectric properties vary gradually according to the concentration profile of metallic particles in the roughness layer. The concentration profile can be obtained from SEM or high-resolution optical microscopy. As concentration of metallic particles increases along the axis normal to the laminate dielectric and foil boundary, two regions can be determined: insulating (pre-percolation) and conducting (percolation). Rates of increase of effective loss (or effective conductivity) in these two regions significantly differ. The proposed model of equivalent capacitance with gradient dielectric has been applied to STD and VLP foils, and the results are validated using 3D numerical electromagnetic simulations.
Description of Equivalent Capacitance Model
A roughness profile on a PCB conductor surface can be tested using optical or SEM microscopy, or a surface profiler. The average contents (volume concentration) of metallic particles in the roughness layer varies as a function of the coordinate z normal to the surface. It can be approximated by an exponential function,
(1)
where a and K1 are the fitting parameters.
Two separate regions of effective roughness dielectric can be considered:
Region I: 0p, where the concentration of metallic inclusions is below the percolation threshold, i.e., where the mixture remains in the dielectric phase; this is the region adjacent to the dielectric matrix of the PCB. Herein, Tp is the distance within the layer at which percolation is reached.
Region II: Tp, where the concentration of metallic inclusions is higher than the percolation threshold; this is the region adjacent to the smooth foil level and is conducting. Herein, T is the entire thickness of ERD layer. It includes,
(2)
where ΔT is the thickness of the region above the percolation.
The concentration , at which percolation will occur for the metallic particles in the roughness dielectric layer, can be obtained empirically, i.e., estimated from the microscopy pictures, or from the profiler data. By solving the equation,
(3)
with respect to Tp, one can get the height of the dielectric phase of ERD.
First, let us consider the region 0p. This is the dielectric layer with relative permittivity varying according to the profile function (1) from the matrix dielectric properties em (at z=0) to the final pre-percolation value ep (at z=Tp). Since dielectric function varies with z as,
(4)
The effective permittivity of such a layer can be calculated through the equivalent partial layered capacitor consisting of series connection of sublayer capacitors. The capacitance of the resultant capacitor with variable properties of the dielectric is,
(5)
where C0 is the capacitance of the corresponding air-filled rectangular parallel-plate capacitor of thickness, d. Herein, d = Tp.
The effective dielectric properties of such dielectric layer can be easily derived from (5) as
(6)
Page 1 of 4
Suggested Items
Unlocking Advanced Circuitry Through Liquid Metal Ink
10/31/2024 | I-Connect007 Editorial TeamPCB UHDI technologist John Johnson of American Standard Circuits discusses the evolving landscape of electronics manufacturing and the critical role of innovation, specifically liquid metal ink technology, as an alternate process to traditional metallization in PCB fabrication to achieve ever finer features and tighter tolerances. The discussion highlights the benefits of reliability, efficiency, and yields as a tradeoff to any increased cost to run the process. As this technology becomes better understood and accepted, even sought out by customers and designers, John says there is a move toward mainstream incorporation.
Fresh PCB Concepts: The Critical Nature of Copper Thickness on PCBs
10/31/2024 | Team NCAB -- Column: Fresh PCB ConceptsPCBs are the backbone of modern electronics and the copper layers within these boards serve as the primary pathways for electrical signals. When designing and manufacturing PCBs, copper thickness is one of the most critical factors and significantly affects the board’s performance and durability. The IPC-6012F specification, the industry standard for the performance and qualification of rigid PCBs, sets clear guidelines on copper thickness to ensure reliability in different environments and applications.
Book Excerpt: The Printed Circuit Designer’s Guide to... DFM Essentials, Ch. 1
10/25/2024 | I-Connect007The guidelines offered in this book are based on both ASC recommendations and IPC standards with the understanding that some may require adjustment based on the material set, fabricator processes, and other design constraints. This chapter details high-frequency materials, copper foil types, metal core PCBs, and the benefits of embedded capacitance and resistor materials in multilayer PCBs.
The Cost-Benefit Analysis of Direct Metallization
10/21/2024 | Carmichael Gugliotti, MacDermid AlphaCarmichael Gugliotti of MacDermid Alpha discusses the innovative realm of direct metallization technology, its numerous applications, and significant advantages over traditional processes. Carmichael offers an in-depth look at how direct metallization, through developments such as Blackhole and Shadow, is revolutionizing PCB manufacturing by enhancing efficiency, sustainability, and cost-effectiveness. From its origins in the 1980s to its application in cutting-edge, high-density interconnects and its pivotal role in sustainability, this discussion sheds light on how direct metallization shapes the future of PCB manufacturing across various industries, including automotive, consumer electronics, and beyond.
Connect the Dots: Designing for Reality—Pattern Plating
10/16/2024 | Matt Stevenson -- Column: Connect the DotsIn the previous episode of I-Connect007’s On the Line with… podcast, we painted the picture of the outer layer imaging process. Now we are ready for pattern plating, where fabrication can get tricky. The board is now ready to receive the copper traces, pads, and other elements specified in the original CAD design. This article will lay out the pattern plating process and discuss constraints in the chemistries that must be properly managed to meet the customer's exacting manufacturing tolerances.