-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueRules of Thumb
This month, we delve into rules of thumb—which ones work, which ones should be avoided. Rules of thumb are everywhere, but there may be hundreds of rules of thumb for PCB design. How do we separate the wheat from the chaff, so to speak?
Partial HDI
Our expert contributors provide a complete, detailed view of partial HDI this month. Most experienced PCB designers can start using this approach right away, but you need to know these tips, tricks and techniques first.
Silicon to Systems: From Soup to Nuts
This month, we asked our expert contributors to weigh in on silicon to systems—what it means to PCB designers and design engineers, EDA companies, and the rest of the PCB supply chain... from soup to nuts.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
Carl Schattke on Stackup Design and Managing the Component Shortage
February 28, 2019 | Andy Shaughnessy, Design007 MagazineEstimated reading time: 2 minutes
At AltiumLive, I met Carl Schattke, CID+, a lead PCB designer with an American automaker. Carl and TTM’s Julie Ellis taught a packed class on good stackup practices complete with plenty of slides showing examples of all kinds of stackups. After the class, Carl explained why the stackup is often the root of manufacturing problems downstream, and why today’s discrete component shortages are likely to be around for quite some time.
Andy Shaughnessy: Carl, I saw part of your class with Julie Ellis. It was pretty interesting and entertaining stuff. How did you get the idea to put the class together?
Carl Schattke: We were thinking about different presentations, and Julie thought that it might be useful to co-present on PCB layer stackups because I bring a design perspective and she brings the manufacturer perspective. We decided it would be useful to put a presentation together that would address how to communicate between a designer and the manufacturer, what information to communicate, and why that’s important.
When I was planning the talk, initially, I thought, “Wow, this is a big subject.” There's a lot of different areas to pull in because you have the physics of the board technology, and then you have the communication with your vendor. Then, there are all of the parameters that are involved with PCB layer stackup. It impacts your cost and lead times, and impacts who you can make the board with. As I said in my talk, it's basically how an artist uses a canvas. Our artwork requires a board layer stackup. When we put all of our geometry on there, it starts with the layer stackup, and our paintbrushes are the components and traces we use; that's how we end up with beautiful art work.
It's technical, unlike somebody with an easel, but it's the same kind of thing. We are looking to create artwork that is going to be manufacturable, cost efficient, and effective in providing the electrical connectivity that we are looking for. I wanted to start the presentation with some of the basics, then discuss what could go wrong, so we covered a variety of examples of the kinds of problems people can encounter with their PCBs and their stackup. Next, we covered the physics of PCB layer stackup and how you solve those problems. We talked about some of the areas when communicating to get a certain type of board built. Then, we went in to some of the costs and different problems.
To read this entire article, which appeared in the January 2019 issue of Design007 Magazine, click here.
Suggested Items
Beyond Design: High-speed Rules of Thumb
11/21/2024 | Barry Olney -- Column: Beyond DesignThe idiom “rule of thumb” is often used in electronics design and has its origins in the practice of measuring roughly with one’s thumb. Rules of thumb are easy-to-remember, broadly accurate guides or principles based on practice rather than theory. They are used to help feed our intuition to find a quick solution based on experience. We are often forced to use rules of thumb in PCB design in the absence of expensive analysis tools. We also use them to get quick ballpark figures initially and then fine-tune the numbers with further analysis. We can use rules of thumb as a sanity check to assess whether we are using our tools correctly. In this month’s column, I will present some commonly used and helpful rules for high-speed PCB design.
Partial HDI: A Delicate Balance
10/30/2024 | I-Connect007 Editorial TeamPartial HDI can be the perfect solution for designers faced with escape routing from tight-pitch BGAs. But there are a variety of material, signal integrity, and DFM trade-offs to understand before you get fully into partial HDI. We asked Stephen Chavez to explain the fundamentals, as well as the details, of this promising process. Are you using partial HDI?
Fresh PCB Concepts: The Critical Nature of Copper Thickness on PCBs
10/31/2024 | Team NCAB -- Column: Fresh PCB ConceptsPCBs are the backbone of modern electronics and the copper layers within these boards serve as the primary pathways for electrical signals. When designing and manufacturing PCBs, copper thickness is one of the most critical factors and significantly affects the board’s performance and durability. The IPC-6012F specification, the industry standard for the performance and qualification of rigid PCBs, sets clear guidelines on copper thickness to ensure reliability in different environments and applications.
Book Excerpt: The Printed Circuit Designer’s Guide to... DFM Essentials, Ch. 1
10/25/2024 | I-Connect007The guidelines offered in this book are based on both ASC recommendations and IPC standards with the understanding that some may require adjustment based on the material set, fabricator processes, and other design constraints. This chapter details high-frequency materials, copper foil types, metal core PCBs, and the benefits of embedded capacitance and resistor materials in multilayer PCBs.
Designers Notebook: Implementing HDI and UHDI Circuit Board Technology
10/23/2024 | Vern Solberg -- Column: Designer's NotebookTo accommodate new generations of high I/O semiconductor packaging, circuit board technology has undergone significant changes in both the fabrication process method and the criteria for base material selection. The reason behind these changes is the new high-function semiconductor package families that require more terminals than their predecessors and a significantly narrower terminal pitch.