-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueThe Rise of Data
Analytics is a given in this industry, but the threshold is changing. If you think you're too small to invest in analytics, you may need to reconsider. So how do you do analytics better? What are the new tools, and how do you get started?
Counterfeit Concerns
The distribution of counterfeit parts has become much more sophisticated in the past decade, and there's no reason to believe that trend is going to be stopping any time soon. What might crop up in the near future?
Solder Printing
In this issue, we turn a discerning eye to solder paste printing. As apertures shrink, and the requirement for multiple thicknesses of paste on the same board becomes more commonplace, consistently and accurately applying paste becomes ever more challenging.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - smt007 Magazine
New ‘Blue-Green’ Solution for Recycling World’s Batteries
April 12, 2019 | Rice UniversityEstimated reading time: 4 minutes
Rice University researchers literally have a solution to deal with the glut of used lithium-ion batteries left behind by the ever-increasing demand for electric vehicles, cellphones and other electronic devices.
A solution turns green as it pulls cobalt from a spent lithium-ion cathode. A Rice University laboratory is developing an environmentally friendly method to recover valuable metals from used batteries. (Photo by Jeff Fitlow/Rice University)
The Rice lab of materials scientist Pulickel Ajayan used an environmentally friendly deep eutectic solvent to extract valuable elements from the metal oxides commonly used as cathodes in lithium-ion batteries. The goal, researchers said, is to curtail the use of harsh processes to recycle batteries and keep them out of landfills.
The solvent, made of commodity products choline chloride and ethylene glycol, extracted more than 90% of cobalt from powdered compounds, and a smaller but still significant amount from used batteries.
“Rechargeable battery waste, particularly from lithium-ion batteries, will become an increasingly menacing environmental challenge in the future as the demand for these through their usage in electric vehicles and other gadgets increases dramatically,” Ajayan said.
“It’s important to recover strategic metals like cobalt that are limited in supply and are critical for the performance of these energy-storage devices,” he said. “Something to learn from our present situation with plastics is that it is the right time to have a comprehensive strategy for recycling the growing volume of battery waste.
“This has been attempted before with acids,” said Rice graduate student and lead author Kimmai Tran. “They’re effective, but they’re corrosive and not eco-friendly. As a whole, recycling lithium-ion batteries is typically expensive and a risk to workers.”Other processes also have drawbacks, she said. Pyrometallurgy involves crushing and mixing at extreme temperatures, and the harmful fumes require scrubbing. Hydrometallurgy requires caustic chemicals, while other “green” solvents that extract metal ions often require additional agents or high-temperature processes to fully capture them.
“The nice thing about this deep eutectic solvent is that it can dissolve a wide variety of metal oxides,” Tran said. “It’s literally made of a chicken feed additive and a common plastic precursor that, when mixed together at room temperature, form a clear, relatively nontoxic solution that has effective solvating properties.”
A deep eutectic solvent is a mixture of two or more compounds that freezes at temperatures much lower than each of its precursors. In that way, she said, one can literally obtain a liquid from a simple combination of solids.
“The large depression of freezing and melting points is due to the hydrogen bonds formed between the different chemicals,” Tran said. “By selecting the right precursors, inexpensive ‘green’ solvents with interesting properties can be fabricated.”
When Tran joined, the Rice group was already testing a eutectic solution as an electrolyte in next-generation high-temperature supercapacitors.
“We tried to use it in metal oxide supercapacitors, and it was dissolving them,” said Rice research scientist and co-corresponding author Babu Ganguli. “The color of the solution would change.”
Rice University research scientist Babu Ganguli and graduate student Kimmai Tran show test tubes with their eutectic solvent and varying concentrations of cobalt drawn into the solution. They are developing the solvent to extract cobalt and lithium from spent lithium-ion batteries. (Photo by Jeff Fitlow/Rice University)
The eutectic was pulling ions from the supercapacitor’s nickel.
“Our team was discussing this and we soon realized we could use what was thought to be a disadvantage for electrolyte as an advantage for dissolving and recycling spent lithium batteries,” Ganguli said.
That became Tran’s focus, as she tested deep eutectic solvents on metal oxides at different temperatures and time scales. During tests with lithium cobalt oxide powder, the clear solvent yielded a wide spectrum of blue-green colors that indicated the presence of cobalt dissolved within.
At 180 degrees Celsius (356 degrees Fahrenheit), the solvent extracted nearly 90% of lithium ions, and up to 99% of cobalt ions from the powder when certain conditions were satisfied.
The researchers built small prototype batteries and cycled them 300 times before exposing the electrodes to the same conditions. The solvent proved adept at dissolving the cobalt and lithium while separating the metal oxides from the other compounds present in the electrode.
The blue-green color of solutions reveals the presence of cobalt taken from spent lithium-ion batteries through a new process developed at Rice University. (Photo by Jeff Fitlow/Rice University)
They found that cobalt could be recovered from the eutectic solution through precipitation or even electroplating to a steel mesh, as this latter method potentially allowed for the deep eutectic solvent itself to be reused.
“We focused on cobalt,” said Rice alumnus Marco Rodrigues, now a postdoctoral researcher at Argonne National Laboratory. “From a resource standpoint, it’s the most critical part. The battery in your phone will surely have lots of it. Lithium is very valuable too, but cobalt in particular is not only environmentally scarce but also, from a social standpoint, hard to get.”He noted the Department of Energy is mounting new efforts to advance battery recycling technologies and recently announced a center for Li-ion battery recycling.
The path forward will require continued efforts.
“It’s likely we won’t be able to recycle and replace mining completely,” Tran said. “These technologies are relatively new, and there is a lot of optimization that needs to be done, such as exploring other deep eutectic solvents, but we truly believe in the potential for greener ways to do dirty chemistry. Sustainability is in the heart of the work I do and what I want to do for the rest of my career.”
Graduate student Keiko Kato is a co-author of the paper. Ajayan is the Benjamin M. and Mary Greenwood Anderson Professor in Engineering and a professor of chemistry.
The National Science Foundation supported the research through its Graduate Research Fellowship Program.
Suggested Items
Exploring Innovation Through Alternate Metals and Sputtering
11/11/2024 | Marcy LaRont, I-Connect007Dr. Evelyne Parmentier has a PhD in physical chemistry from ETH Zurich. She was born in Luxembourg and is now a proud resident of Switzerland, where she has been part of Dyconex’s R&D engineering team for the past two years. Evelyne gave a presentation at the EIPC Summer Conference titled “Functionalization of Printed Circuit Boards Through Introducing Alternate Metals Through Sputtered Layers,” where she asked her audience, “If there are 93 metals in the periodic table, why are we not using more of them?”
BWXT to Acquire L3Harris’ A.O.T. Business to Expand Special Materials Portfolio
11/05/2024 | L3Harris TechnologiesBWX Technologies, Inc. and L3Harris Technologies, Inc. announced the signing of a purchase agreement for BWXT to acquire L3Harris’ Aerojet Ordnance Tennessee, Inc. (A.O.T.) business for approximately $100 million.
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
11/01/2024 | Andy Shaughnessy, Design007 MagazineIt’s been a busy week in PCB design, fabrication, and assembly. We published some mixed news about the EMS segment, and an article about the supply chain. Are companies holding onto too much inventory? After the recent supply chain snafus, I can certainly understand why they might. We have an article about liquid metal ink, a cool new technology developed by LDQX, formerly known as Averatek. We also have an article about fighting advanced counterfeiting methods, and news about an acquisition by Siemens.
Unlocking Advanced Circuitry Through Liquid Metal Ink
10/31/2024 | I-Connect007 Editorial TeamPCB UHDI technologist John Johnson of American Standard Circuits discusses the evolving landscape of electronics manufacturing and the critical role of innovation, specifically liquid metal ink technology, as an alternate process to traditional metallization in PCB fabrication to achieve ever finer features and tighter tolerances. The discussion highlights the benefits of reliability, efficiency, and yields as a tradeoff to any increased cost to run the process. As this technology becomes better understood and accepted, even sought out by customers and designers, John says there is a move toward mainstream incorporation.
The Cost-Benefit Analysis of Direct Metallization
10/21/2024 | Carmichael Gugliotti, MacDermid AlphaCarmichael Gugliotti of MacDermid Alpha discusses the innovative realm of direct metallization technology, its numerous applications, and significant advantages over traditional processes. Carmichael offers an in-depth look at how direct metallization, through developments such as Blackhole and Shadow, is revolutionizing PCB manufacturing by enhancing efficiency, sustainability, and cost-effectiveness. From its origins in the 1980s to its application in cutting-edge, high-density interconnects and its pivotal role in sustainability, this discussion sheds light on how direct metallization shapes the future of PCB manufacturing across various industries, including automotive, consumer electronics, and beyond.