-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueRules of Thumb
This month, we delve into rules of thumb—which ones work, which ones should be avoided. Rules of thumb are everywhere, but there may be hundreds of rules of thumb for PCB design. How do we separate the wheat from the chaff, so to speak?
Partial HDI
Our expert contributors provide a complete, detailed view of partial HDI this month. Most experienced PCB designers can start using this approach right away, but you need to know these tips, tricks and techniques first.
Silicon to Systems: From Soup to Nuts
This month, we asked our expert contributors to weigh in on silicon to systems—what it means to PCB designers and design engineers, EDA companies, and the rest of the PCB supply chain... from soup to nuts.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
Improving Method to Recycle and Renew Used Cathodes from Lithium-Ion Batteries
April 18, 2019 | University of California San DiegoEstimated reading time: 2 minutes
Researchers at the University of California San Diego have improved their recycling process that regenerates degraded cathodes from spent lithium-ion batteries. The new process is safer and uses less energy than their previous method in restoring cathodes to their original capacity and cycle performance.
Zheng Chen, a professor of nanoengineering who is affiliated with the Sustainable Power and Energy Center at UC San Diego, led the project. The work was published in Advanced Energy Materials.
“Due to the rapid growth of electric vehicle markets, the worldwide manufacturing capacity of lithium-ion batteries is expected to reach hundreds of gigawatt hours per year in the next five years,” Chen said. “This work presents a solution to reclaim the values of end-of-life lithium-ion batteries after 5 to 10 years of operation.”
Chen’s team previously developed a direct recycling approach to recycle and regenerate degraded cathodes. It replenishes lithium ions that cathodes lose over extended use and restores their atomic structures back to their original states. However, that process involves pressurizing a hot lithium salt solution of cathode particles to around 10 atmospheres. The problem is this pressurizing step raises costs and requires extra safety precautions and special equipment, said Chen.
So the team developed a milder process to do the same job at ambient pressure (1 atmosphere). The key was using eutectic lithium salts—a mixture of two or more salts that melts at temperatures much lower than either of its components. This combination of solid lithium salts produces a solvent-free liquid that researchers can use to dissolve degraded cathode materials and restore lithium ions without adding any extra pressure in the reactors.
Illustration of the process to restore lithium ions to degraded NMC cathodes using eutectic molten salts at ambient pressure. Image courtesy of Advanced Energy Materials/Chen lab
The new recycling method involves collecting cathode particles from spent lithium ion batteries and then mixing them with a eutectic lithium salt solution. The mixture is then heat treated in two steps: it is first heated to 300 C, then it goes through a short annealing process in which it is heated to 850 C for several hours and then cooled naturally.
Researchers used the method to regenerate NMC (LiNi0.5Mn0.3Co0.2), a popular cathode containing nickel, manganese and cobalt, which is used in many of today’s electric vehicles.
“We made new cathodes from the regenerated particles and then tested them in batteries built in the lab. The regenerated cathodes showed the same capacity and cycle performance as the originals,” said Yang Shi, the first author who performed this work as a postdoctoral researcher in Chen’s lab at UC San Diego.
“In an end-of-life lithium-ion battery, the cathode material loses some of its lithium. The cathode’s crystal structure also changes such that it’s less capable of moving ions in and out. The recycling process that we developed restores both the cathode’s lithium concentration and crystal structure back to their original states,” Shi said.
The team is tuning this process so that it can be used to recycle any type of cathode materials used in lithium-ion and sodium-ion batteries.
“The goal is to make this a universal recycling process for all cathode materials,” Chen said. The team is also working on a process to recycle degraded anodes, such as graphite as well as other materials.
Chen is also collaborating with UC San Diego nanoengineering professor Shirley Meng, who is the director of the Sustainable Power and Energy Center, to identify subtle changes in the cathode microstructure and local composition using high-resolution microscopic imaging tools.
Suggested Items
Rules of Thumb for PCB Layout
11/21/2024 | Andy Shaughnessy, I-Connect007The dictionary defines a “rule of thumb” as “a broadly accurate guide or principle, based on experience or practice rather than theory.” Rules of thumb are often the foundation of a PCB designer’s thought process when tackling a layout. Ultimately, a product spec or design guideline will provide the detailed design guidance, but rules of thumb can help to provide the general guidance that will help to streamline the layout process and avoid design or manufacturing issues.
Sat Nusapersada Chooses Siemens' Process Preparation Software to Boost NPI and SMT Line Efficiency
11/21/2024 | Siemens Digital Industries SoftwareSiemens Digital Industries Software announced that Sat Nusapersada, one of the largest Electronics Manufacturing Services (EMS) providers in Indonesia, has adopted its Process Preparation software to reduce its timescale for New Product Introduction (NPI) of printed circuit board assemblies and improve the efficiency of its Surface Mount Technology production lines by 23 percent.
NTT, Olympus Joint Demonstration Shows IOWN APN's Low-latency Capability
11/21/2024 | JCN NewswireNTT Corporation and Olympus Corporation announced that, following the start of their joint experiment in March of the world’s first cloud endoscope system which processes endoscopic videos on the cloud, they jointly established a cloud endoscopy system utilizing the IOWN APN technology.
PI's New Expansion for Higher Electronics Manufacturing Capacities and Shorter Lead Times
11/20/2024 | PRNewswirePI, the market and technology leader for high-precision motion control, positioning technology, and piezo applications, has completed the construction of additional electronics production space at its Rosenheim, Germany site.
Infineon, Quantinuum Partner to Accelerate Quantum Computing Towards Meaningful Real-world Applications
11/20/2024 | InfineonInfineon Technologies AG, a global leader in semiconductor solutions, and Quantinuum, a global leader in integrated, full-stack quantum computing, today announced a strategic partnership to develop the future generation of ion traps.