-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueIntelligent Test and Inspection
Are you ready to explore the cutting-edge advancements shaping the electronics manufacturing industry? The May 2025 issue of SMT007 Magazine is packed with insights, innovations, and expert perspectives that you won’t want to miss.
Do You Have X-ray Vision?
Has X-ray’s time finally come in electronics manufacturing? Join us in this issue of SMT007 Magazine, where we answer this question and others to bring more efficiency to your bottom line.
IPC APEX EXPO 2025: A Preview
It’s that time again. If you’re going to Anaheim for IPC APEX EXPO 2025, we’ll see you there. In the meantime, consider this issue of SMT007 Magazine to be your golden ticket to planning the show.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - smt007 Magazine
EM Modeling: The Impact of Copper Ground Pour on Loss and Impedance
May 2, 2019 | Chang Fei Yee, Keysight TechnologiesEstimated reading time: 1 minute

This article briefly introduces the general purposes of copper ground pour on printed circuit boards. Subsequently, the impact of copper ground pour on PCB channel loss in terms of insertion loss and impedance in terms of time domain reflectometry (TDR) is studied with electromagnetic modeling using Mentor HyperLynx.
Introduction
Copper ground pours are created by filling open, unpopulated, or unrouted areas on outer layers of the PCB with copper. Subsequently, copper fill is hooked up to ground planes on inner layers with stitching vias as depicted in Figure 1. Copper ground pours on outer layers provide extra shielding against electromagnetic radiation by signals on inner layers. Besides that, copper pour also serves as a heat sink for the voltage regulator module on PCBs. In terms of manufacturability, copper pour reduces the possibility of PCB warpage during reflow by balancing the amount of copper on each side of the PCB.
However, copper ground pour comes with some disadvantages, as there is a change in impedance of PCB trace adjacent to ground pour (i.e., impedance decreases when copper pour becomes closer to the PCB trace). As a result, the impedance mismatch contributes additional PCB loss to the transmission line at a high-frequency range.
Analysis and Results
To study the impact of copper pour on PCB channel loss in terms of insertion loss and impedance in terms of TDR, five models of 1” single-ended microstrip listed in Table 1 were created. The simulation topology is shown in Figure 2. For model 1A, a microstrip trace 5 mils wide and 1 oz. thick is laid out 2.65 mils above the reference plane insulated by low-loss dielectric substrate material. This trace is sandwiched between two ground traces on the same outer layer. The spacing between each adjacent ground trace and the signal trace is 1x the signal trace width. Meanwhile, the spacing between each ground and signal trace is set as 2x, 4x, 6x, and 8x for model 1B, 1C, 1D and 1E, respectively.
To read this entire article, which appeared in the April 2019 issue of Design007 Magazine, click here.
Suggested Items
RF PCB Design Tips and Tricks
05/08/2025 | Cherie Litson, EPTAC MIT CID/CID+There are many great books, videos, and information online about designing PCBs for RF circuits. A few of my favorite RF sources are Hans Rosenberg, Stephen Chavez, and Rick Hartley, but there are many more. These PCB design engineers have a very good perspective on what it takes to take an RF design from schematic concept to PCB layout.
Trouble in Your Tank: Causes of Plating Voids, Pre-electroless Copper
05/09/2025 | Michael Carano -- Column: Trouble in Your TankIn the business of printed circuit fabrication, yield-reducing and costly defects can easily catch even the most seasoned engineers and production personnel off guard. In this month’s column, I’ll investigate copper plating voids with their genesis in the pre-plating process steps.
Elephantech: For a Greener Tomorrow
04/16/2025 | Marcy LaRont, PCB007 MagazineNobuhiko Okamoto is the global sales and marketing manager for Elephantech Inc., a Japanese startup with a vision to make electronics more sustainable. The company is developing a metal inkjet technology that can print directly on the substrate and then give it a copper thickness by plating. In this interview, he discusses this novel technology's environmental advantages, as well as its potential benefits for the PCB manufacturing and semiconductor packaging segments.
Trouble in Your Tank: Organic Addition Agents in Electrolytic Copper Plating
04/15/2025 | Michael Carano -- Column: Trouble in Your TankThere are numerous factors at play in the science of electroplating or, as most often called, electrolytic plating. One critical element is the use of organic addition agents and their role in copper plating. The function and use of these chemical compounds will be explored in more detail.
IDTechEx Highlights Recyclable Materials for PCBs
04/10/2025 | IDTechExConventional printed circuit board (PCB) manufacturing is wasteful, harmful to the environment and energy intensive. This can be mitigated by the implementation of new recyclable materials and technologies, which have the potential to revolutionize electronics manufacturing.