-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueMoving Forward With Confidence
In this issue, we focus on sales and quoting, workforce training, new IPC leadership in the U.S. and Canada, the effects of tariffs, CFX standards, and much more—all designed to provide perspective as you move through the cloud bank of today's shifting economic market.
Intelligent Test and Inspection
Are you ready to explore the cutting-edge advancements shaping the electronics manufacturing industry? The May 2025 issue of SMT007 Magazine is packed with insights, innovations, and expert perspectives that you won’t want to miss.
Do You Have X-ray Vision?
Has X-ray’s time finally come in electronics manufacturing? Join us in this issue of SMT007 Magazine, where we answer this question and others to bring more efficiency to your bottom line.
- Articles
- Columns
- Links
- Media kit
||| MENU - smt007 Magazine
Washable Electronic Textiles to Usher in an Era of Even Smarter Wearable Products
June 21, 2019 | Korea Institute of Science and TechnologyEstimated reading time: 2 minutes

With the wearable electronic device market having firmly established itself in the 21st century, active research is being conducted on electronic textiles, which are textiles (e.g. clothing) capable of functioning like electronic devices. Fabric-based items are flexible and can be worn comfortably all day, making them the ideal platform for wearable electronic devices.
Image Caption: A new electronic textile developed by KIST's research team that turns on LEDs on top of fabric.
The research team of Dr. Jung-ah Lim of the Korea Institute of Science and Technology (KIST, president: Byung-gwon Lee) announced that it has developed a fibrous transistor that has a fiber structure, giving it the characteristics of a textile while allowing it to be inserted into clothing and retain an adequate level of functionality even after being washed (Advanced Materials, "A New Architecture for Fibrous Organic Transistors Based on a Double-Stranded Assembly of Electrode Microfibers for Electronic Textile Applications").
Existing technology involves physically attaching a solid electronic device (sensor, etc.) to the surface of clothing or using conductive textiles to connect various devices, with little to no attention paid to the wearer's comfort. Existing thread-type transistors are made by depositing a flat transistor onto a single conductive thread.
Electrodes made in this manner require a high voltage in order to be activated, but the low current that is generated is often insufficient to activate display devices (LED, etc.). Until now, it was also difficult to create electronic circuits through contact with other devices (for woven fabrics) or to apply a protective layer to the transistor to allow for washing.
The transistor developed by the KIST research team is made by connecting twisted electrodes. Using this structure, the team was able to adjust the length of the threads and thickness of the semiconductor to obtain currents over 1,000-times higher than those possible using existing transistors, even at low voltages (below -1.3V).
Through tests, Lim's team confirmed that even after bending the transistor or winding it around a cylindrical object over 1,000 times (with a resulting thickness of approximately 7 millimeters), it maintained a performance level of over 80 percent. The team also announced that the performance level remained adequate even after washing the transistor in water containing detergent. The team was also able to activate an LED device with the transistor inserted between the threads of clothing and measure electrocardiogram signals through signal amplification.
Lim said, "The results of this study point to a new device structure that can overcome the limitations of current electronic textiles, including low current, high activation voltage, and low resilience to washing. We expect that our study will contribute to the development of even smarter wearable products in the future, including next-generation wearable computers and smart clothing that can monitor vital signs."
Suggested Items
North American EMS Industry Shipments Down 9.3% in May
06/20/2025 | IPCIPC announced the May 2025 findings from its North American Electronics Manufacturing Services (EMS) Statistical Program. The book-to-bill ratio stands at 1.43.
North American PCB Industry Sales Up 21.4% in May
06/20/2025 | IPCIPC announced the May 2025 findings from its North American Printed Circuit Board (PCB) Statistical Program. The book-to-bill ratio stands at 1.03.
Chiplets and the Like are Redefining Microelectronics
06/25/2025 | productronicaThe performance of modern AI and high-performance computing applications can only be achieved with high-performance semiconductor technology.
United Electronics Corporation Advances Manufacturing Capabilities with Schmoll MDI-ST Imaging Equipment
06/24/2025 | United Electronics CorporationUnited Electronics Corporation has successfully installed the advanced Schmoll MDI-ST (XL) imaging equipment at their advanced printed circuit board facility. This significant technology investment represents a continued commitment to delivering superior products and maintaining their position as an industry leader in precision PCB manufacturing.
STMicroelectronics Introduces Advanced Human Presence Detection Solution to Enhance Laptop and PC User Experience
06/24/2025 | STMicroelectronicsSTMicroelectronics, a global semiconductor leader serving customers across the spectrum of electronics applications, introduces a new Human Presence Detection (HPD) technology for laptops, PCs, monitors and accessories, delivering more than 20% power consumption reduction per day in addition to improved security and privacy.