-
-
News
News Highlights
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current Issue
Spotlight on Mexico
Mexico isn’t just part of the electronics manufacturing conversation—it’s leading it. From growing investments to cross-border collaborations, Mexico is fast becoming the center of electronics in North America. This issue includes bilingual content, with all feature articles available in both English and Spanish.
Production Software Integration
EMS companies need advanced software systems to thrive and compete. But these systems require significant effort to integrate and deploy. What is the reality, and how can we make it easier for everyone?
Spotlight on India
We invite you on a virtual tour of India’s thriving ecosystem, guided by the Global Electronics Association’s India office staff, who share their insights into the region’s growth and opportunities.
- Articles
- Columns
- Links
- Media kit
||| MENU - smt007 Magazine
Cavity Board SMT Assembly Challenges (Part 1)
June 26, 2019 | By Dudi Amir and Brett Grossman, Intel Corp.Estimated reading time: 10 minutes
In mobile consumer electronics, there is a perennial need to reduce the space consumed by the motherboard. This need is commonly driven by the desire to shrink a product’s form factor, while also increasing battery capacity. Notebook computers are certainly not immune to this challenge.
Reducing the space consumed by a notebook computer motherboard can be approached along several vectors. Reducing the size and spacing of components placed on the motherboard is a logical first step. Many components have continued to be introduced in progressively smaller packages while assembly capabilities have evolved in parallel to allow these components to be placed closer together. These efforts certainly have a positive impact in reducing the area consumed by the motherboard. The thickness of the motherboard assembly to a first order is limited by the tallest component. In many designs then, the tallest components will receive a great deal of focused effort in searching for thinner alternatives. When these efforts are exhausted, there may still be a need to reduce the motherboard thickness, and that is what drove the effort to evaluate placing components into a cavity on the motherboard printed circuit board (PCB), or what is referred to as Component-in-Cavity (CiC).
Figure 1: CiC example problem.
The concept behind CiC is straightforward. If the tallest component(s) on the motherboard can be placed into a recession created in the motherboard, their thickness relative to the components on the surface of the PCB will thus effectively be reduced (Figure 1).
While this concept may be straightforward, its implementation is not, and that implementation is the focus of this paper.
This paper will discuss two primary challenges to the successful implementation of CiC. In the next section, challenges associated with the PCB test vehicle will be discussed, while subsequent sections will focus on the SMT assembly of components into the cavity and the impact of the PCB design on assembly.
Test Vehicles
Figure 2: Top view of the board test vehicle.
The board design used in the study had 14 layers, was 0.93 mm thick, and 127 x 127 mm size, with an OSP surface finish. The board had identical land patterns for a BGA at two different locations. One was placed on the board surface and the other inside a cavity in the board. The cavity size was 30 x 48 mm. It was on the fourth layer of the board with a nominal depth of 187 μm. There were also four DRAM land patterns outside of the cavity. In order to study supplier-to-supplier variations that occur during high volume manufacturing (HVM), the boards were ordered from three different board suppliers. Figure 2 shows the top view of the board test vehicle.
The packages used in this study were Flip Chip Ball Grid Array (FCBGA) packages for a SiP design containing three silicon die. The package has 1168 balls, which were arranged in a non-regular grid array with a minimum 0.65 mm pitch. The package size was 24 mm x 42 mm. It had a stiffener to control the package warpage during reflow. The top and bottom view of this package is shown in Figure 3.
Figure 3. Top and bottom view of the FCBGA SiP packages.
CiC PCB Challenges—Including the Formation of the Cavity (Laser Stop, etc.)
The fundamental challenge with fabricating the CiC PCB is that it is necessary to remove a limited number of layers of material from an area of the PCB, to expose a component footprint consisting of copper pads and soldermask. Intel has significant experience working with high volume PCB fabricators to enable the removal of layers from a region of the PCB. When all layers in the region are removed, the design is termed Hole in Motheboard (HiMB). When only a partial number of layers are removed, the design is termed Recess in Motherboard (RiMB) [1]. These designs are currently utilized on notebook motherboards when system architects are working to achieve a reduction in thickness.
The unique attribute for CiC is that the bottom of the cavity requires both component pads and soldermask, which significantly increases the complexity of the fabrication process when compared to HiMB and RiMB designs.
Cavity Stackup
Figure 4: CiC board test vehicle stackup.
In order to develop a process for CiC, a test vehicle (TV) was developed as a proxy for a real product design. This TV was focused on a specific application so some details described will be specific to that application. However, where possible, the results described will be generalized. The PCB stackup for the CiC test vehicle is shown in Figure 4. This stackup consists of a six-layer buried core with plated through hole (PTH) vias as well as a single layer of microvia. Additionally, four build-up layers are added to either side of the buried core, resulting in what is referred to as a 4-6-4+ stackup.
For the specific application, the component placed into the cavity was required to have an effective thickness reduction of 200 μm, including any manufacturing variation. Additionally, to support fabrication of a cavity with a component footprint at its bottom it was necessary for the bottom of the cavity to align to one of the copper layers in the stackup. Further, the PCB fabricators who could build this cavity would rely on a laser to define the perimeter of the cavity. This would require the use of a copper ring surrounding the perimeter of the cavity at the desired depth to act as a laser stop. This resulted in two cavity designs that could potentially be utilized.
The cavity design shown in Figure 5 removes three copper layers in the cavity area so the component footprint would be located four layers deep into the stackup. The nominal depth of this cavity is only 187 μm, which does not meet the 200 μm target.
The cavity design in Figure 6 is the result of removing four copper layers from the cavity area so the component footprint is located five layers deep into the stackup. The nominal depth of this cavity design is 249 μm, which is sufficient to meet the 200 μm depth requirement.
The details around considering these two cavity depths will be described in a following section.
TV Design
The TV that was created to support development of the cavity SMT process is shown from the bottom side in Figure 7.
Figure 5: TV cavity design with three copper layers removed.
Page 1 of 3
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
BTU International Earns 2025 Step-by-Step Excellence Award for Its Aqua Scrub™ Flux Management System
10/29/2025 | BTU International, Inc.BTU International, Inc., a leading supplier of advanced thermal processing equipment for the electronics manufacturing market, has been recognized with a 2025 Step-by-Step Excellence Award (SbSEA) for its Aqua Scrub™ Flux Management Technology, featured on the company’s Pyramax™ and Aurora™ reflow ovens.
On the Line With… Ultra HDI Podcast—Episode 7: “Solder Mask: Beyond the Traces,” Now Available
10/31/2025 | I-Connect007I-Connect007 is excited to announce the release of the seventh episode of its 12-part podcast series, On the Line With… American Standard Circuits: Ultra HDI. In this episode, “Solder Mask: Beyond the Traces,” host Nolan Johnson sits down with John Johnson, Director of Quality and Advanced Technology at American Standard Circuits, to explore the essential role that solder mask plays in the Ultra HDI (UHDI) manufacturing process.
Rehm Wins Mexico Technology Award for CondensoXLine with Formic Acid
10/17/2025 | Rehm Thermal SystemsModern electronics manufacturing requires technologies with high reliability. By using formic acid in convection, condensation, and contact soldering, Rehm Thermal Systems’ equipment ensures reliable, void-free solder joints — even when using flux-free solder pastes.
Indium Experts to Deliver Technical Presentations at SMTA International
10/14/2025 | Indium CorporationAs one of the leading materials providers to the power electronics assembly industry, Indium Corporation experts will share their technical insight on a wide range of innovative solder solutions at SMTA International (SMTAI), to be held October 19-23 in Rosemont, Illinois.
Knocking Down the Bone Pile: Revamp Your Components with BGA Reballing
10/14/2025 | Nash Bell -- Column: Knocking Down the Bone PileBall grid array (BGA) components evolved from pin grid array (PGA) devices, carrying over many of the same electrical benefits while introducing a more compact and efficient interconnect format. Instead of discrete leads, BGAs rely on solder balls on the underside of the package to connect to the PCB. In some advanced designs, solder balls are on both the PCB and the BGA package. In stacked configurations, such as package-on-package (PoP), these solder balls also interconnect multiple packages, enabling higher functionality in a smaller footprint.